Functional Studies of Endocannabinoid Metabolizing Enzymes
内源性大麻素代谢酶的功能研究
基本信息
- 批准号:8484801
- 负责人:
- 金额:$ 48.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:2-arachidonylglycerolActive SitesAgonistAmidesAnti-Inflammatory AgentsAnti-inflammatoryBehaviorBindingBinding ProteinsBiochemicalBiochemical PathwayBiologicalBrainCarrier ProteinsCatalysisCell Cycle KineticsCellsChemicalsChemistryDegradation PathwayDiseaseDrug TargetingDrug usageEndocannabinoidsEnvironmentEnzymatic BiochemistryEnzymesEthanolaminesFatty AcidsFundingGeneticGoalsHumanHydrolaseHydrolysisIndividualKineticsKnowledgeLinkLipid ALipid BilayersLipidsMapsMediatingMembraneMembrane LipidsMental DepressionMetabolicMetabolic DiseasesMetabolismMethodsModelingMolecular BiologyMonoacylglycerol LipasesMusMutationNervous system structureNeuronsObesityPainPathway interactionsPhysiologicalPhysiologyPlayProcessPropertyProteinsProteomicsRecruitment ActivityRoleSignal TransductionSiteStructureSynthesis ChemistrySystemTRP channelTaurineTestingTravelanandamidebasechemical geneticsenzyme structurefactor Afatty acid amide hydrolasein vivoinhibitor/antagonistinsightmetabolomicsmouse modelmutantprotein transporttooluptake
项目摘要
TPhreo jeocbt jescutmivme aoryf : Project 1 is to understand the biochemical and cellular mechanisms for terminating
endocannabinoid (EC) signaling in the nervous system. The two major ECs, anandamide (AEA) and 2-
arachidonoylglycerol (2-AG), are degraded by disfinct enzymatic pathways in vivo. AEA is principally regulated
by the integral membrane enzyme fatty acid amide hydrolase (FAAH), which also hydrolyzes several other
bioactive fatty acid amides, including the anti-infiammatory lipid A/-palmitoyl ethanolamine, the satiating factor
A/-oleoyl ethanolamine, and the TRP channel agonist A/-arachidonoyl taurine. A major challenge in
understanding FAAH-regulated fatty acid amide signaling is to discriminate the distinct physiological functions
of endogenous FAAH substrates. 2-AG is hydrolyzed by several enzymes in the brain, including the soluble
enzyme monoacylglycerol lipase (MAGL) and the integral membrane hydrolases ABHD6 and ABHD12. A
major challenge in understanding 2-AG signaling is to determine the unique biochemical and cellular properties
of individual 2-AG hydrolytic enzymes. Prior to enzymatic hydrolysis, both AEA and 2-AG may interact with
binding proteins responsible for cellular uptake and transport. A major challenge in understanding EC uptake
and transport is to identify the putative proteins that mediate these processes. In the previous funding period,
we used a combination of synthetic chemistry, enzymology, molecular biology, and functional
proteomic/metabolomic methods to enrich our understanding of EC degradative pathways. We have also
developed powerful new chemical and genetic tools to probe the function of these pathways. In this renewal
application, we plan to use our suite of chemical and genetic tools to gain further mechanistic insights into EC
degradative pathways. Specifically, we aim to: 1) characterize mouse models with altered EC degradative
pathways, 2) characterize the biochemical and cell biological properties of brain 2-AG hydrolases, and 3) map
lipid-protein interactions in EC degradative pathways using chemical proteomic methods. We anticipate that
these studies will enhance our understanding of the biochemical pathways that terminate EC signaling in the
nervous system and define key components in these pathways that may serve as drug targets for the treatment
of a range of human disorders, including pain, depression, and metabolic disorders.
TPhreo jeocbt jescutmivme aoryf :项目 1 是了解终止的生化和细胞机制
神经系统中的内源性大麻素 (EC) 信号传导。两种主要的 EC,anandamide (AEA) 和 2-
花生四烯酰甘油 (2-AG) 在体内通过不同的酶途径降解。 AEA主要受到监管
由整合膜酶脂肪酸酰胺水解酶 (FAAH) 产生,该酶还水解其他几种物质
生物活性脂肪酸酰胺,包括抗炎脂质 A/-棕榈酰乙醇胺、饱足因子
A/-油酰乙醇胺和TRP通道激动剂A/-花生四烯酰牛磺酸。一个重大挑战
了解 FAAH 调节的脂肪酸酰胺信号传导是为了区分不同的生理功能
内源性 FAAH 底物。 2-AG 被大脑中的多种酶水解,包括可溶性酶
单酰基甘油脂肪酶 (MAGL) 和整合膜水解酶 ABHD6 和 ABHD12。一个
了解 2-AG 信号传导的主要挑战是确定独特的生化和细胞特性
单个2-AG水解酶。在酶水解之前,AEA 和 2-AG 都可能与
负责细胞摄取和运输的结合蛋白。了解 EC 吸收的主要挑战
运输的目的是识别介导这些过程的推定蛋白质。在上一个资助期内,
我们结合了合成化学、酶学、分子生物学和功能学
蛋白质组学/代谢组学方法丰富了我们对 EC 降解途径的理解。我们还有
开发了强大的新化学和遗传工具来探测这些途径的功能。在这次更新中
应用程序中,我们计划使用我们的化学和遗传工具套件来获得对 EC 的进一步机制见解
降解途径。具体来说,我们的目标是:1)表征具有改变的 EC 降解的小鼠模型
途径,2) 表征脑 2-AG 水解酶的生化和细胞生物学特性,以及 3) 图谱
使用化学蛋白质组学方法研究 EC 降解途径中的脂质-蛋白质相互作用。我们预计
这些研究将增强我们对终止 EC 信号传导的生化途径的理解
神经系统并定义这些途径中的关键组成部分,这些组成部分可以作为治疗的药物靶标
一系列人类疾病,包括疼痛、抑郁和代谢紊乱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENJAMIN F CRAVATT其他文献
BENJAMIN F CRAVATT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENJAMIN F CRAVATT', 18)}}的其他基金
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
- 批准号:
10714543 - 财政年份:2023
- 资助金额:
$ 48.9万 - 项目类别:
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10652580 - 财政年份:2021
- 资助金额:
$ 48.9万 - 项目类别:
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10436295 - 财政年份:2021
- 资助金额:
$ 48.9万 - 项目类别:
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10211553 - 财政年份:2021
- 资助金额:
$ 48.9万 - 项目类别:
RP5: Chemical proteomic discovery of small-molecule probes for autophagy proteins
RP5:自噬蛋白小分子探针的化学蛋白质组学发现
- 批准号:
10364727 - 财政年份:2019
- 资助金额:
$ 48.9万 - 项目类别:
RP5: Chemical proteomic discovery of small-molecule probes for autophagy proteins
RP5:自噬蛋白小分子探针的化学蛋白质组学发现
- 批准号:
10573265 - 财政年份:2019
- 资助金额:
$ 48.9万 - 项目类别:
Chemical Proteomic Platforms for Radically Expanding Cancer Druggability
用于从根本上扩展癌症成药性的化学蛋白质组学平台
- 批准号:
10248401 - 财政年份:2018
- 资助金额:
$ 48.9万 - 项目类别:
Chemical Proteomic Platforms for Radically Expanding Cancer Druggability
用于从根本上扩展癌症成药性的化学蛋白质组学平台
- 批准号:
10477261 - 财政年份:2018
- 资助金额:
$ 48.9万 - 项目类别:
相似海外基金
CB1 Allosteric Modulators: Molecular, Cellular and In Vivo Pharmacology
CB1 变构调节剂:分子、细胞和体内药理学
- 批准号:
9259973 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
CB1 Allosteric Modulators: Molecular, Cellular and In Vivo Pharmacology
CB1 变构调节剂:分子、细胞和体内药理学
- 批准号:
9056090 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Inhibition of Endocannabinoid Biosynthesis via Diacylglycerol Lipase
通过二酰基甘油脂肪酶抑制内源性大麻素生物合成
- 批准号:
7447608 - 财政年份:2008
- 资助金额:
$ 48.9万 - 项目类别:
Inhibition of Endocannabinoid Biosynthesis via Diacylglycerol Lipase
通过二酰基甘油脂肪酶抑制内源性大麻素生物合成
- 批准号:
7575664 - 财政年份:2008
- 资助金额:
$ 48.9万 - 项目类别:
Cannabimimetic Ligands and Endocannabinoid Active Sites
大麻模拟配体和内源性大麻素活性位点
- 批准号:
7222485 - 财政年份:2007
- 资助金额:
$ 48.9万 - 项目类别: