Integrating EEG/MEG and fMRI: 99-M-0172

整合 EEG/MEG 和 fMRI:99-M-0172

基本信息

项目摘要

Development of MEG data recording and signal processing methods has been very successful. Studies of working memory tasks and auditory processing tasks have shown the ability to localize brain activation and to address issues of phasic versus tonic activity. We are investigating phenotype measures that will be applicable in many related studies and specifically the sibling project. MEG recording during cognitive activation has shown the ability to localize in very comparable fashion to fMRI. Specifically beta desynchronization at the cortical level has been found to agree with BOLD activation results. However, the MEG/EEG allows for temporal information not possible with other imaging techniques. Our results show that measures of brain structure and function represent powerful tools to find susceptibility genes. Further studies have demonstrated the ability to localize signals in deeper structures such as the amygdala and to investigate the relation of visual awareness to gamma band signals. We have also found that GABA (gamma-aminobutyric acid) concentration in the anterior cingulate cortex correlates with spatially localized resting MEG beta band power. We expect that further investigation will reveal additional relationships between gamma power and GABA systems. Differences in the degree of activation especially in frontal regions as indexed by beta desynchronization during a working memory task have been found between patients with schizophrenia compared to well siblings and normal control volunteers. Previously we have seen that this activation reveals an interaction with genotype for the well studied COMT marker. We have found there is a modulation of prefrontal cortex activity that occurs in anticipation of the upcoming task demands. We have extended this analysis to a well matched set of patients, siblings and controls. When working memory task performance is controlled patients show a distinct reduced DLPFC activation in apparent distinction to increased BOLD relative to task load. The MEG analysis isolates a working memory component that may reflect a different aspect of cortical processing. We now find that this component has a distinctly different relation to behavior in patients with schizophrenia compared to healthy volunteers. We are now comparing these results across modalities to better understand how these measures reflect brain activation. Differences in network patterns and dynamics are key to understanding underlying pathology in clinical groups. Bassett et al have shown that functional network differences in patient groups can be demonstrated and related to behavioral outcomes on cognitive activities. Rutter et al have shown that even at rest patients with schizophrenia have gamma power reduction compared to normal subjects. It remains to be seen whether these finding relate to state or trait differences and if there are genetic associations. We have found distinct patterns of the temporal sequence of brain regions involved in these memory tasks that show a variety of individual differences across subjects. This has been extended using graph theoretic measures as a way to capture properties of the pattern activity across brain regions. In a face recognition tasks we found a distinct network of regions that interact by cross-coupling of different frequencies of oscillatory. Further studies will examine the difference across clinical groups. Previous work examined whether reorganization of functional brain networks can be seen in response to cognitive remediation strategies using auditory task training in both patients and healthy. We were able to show significant changes in power and coherence in brain activity that were associated with improved behavioral performance. This could form the basis of a biomarker that would allow tracking the outcome of remediation strategies targeting specific cognitive deficits in neuropsychiatric disorders. Recent work has shown that MEG is able to show wide spread critical dynamics that are crucial to optimize information processing in such networks. These optimal dynamics may be essential for the plasticity necessary for appropriate adaptive behavior.
MEG数据记录和信号处理方法的开发非常成功。对工作记忆任务和听觉处理任务的研究表明,能够定位大脑激活并解决阶段性活动与补品活动的问题。我们正在研究将适用于许多相关研究,特别是同级项目的表型测量。 认知激活期间的MEG记录表明能够以与fMRI相当的方式定位。已发现皮质水平上的beta脱离同步与大胆的激活结果一致。但是,MEG/EEG允许使用其他成像技术提供时间信息。我们的结果表明,大脑结构和功能的度量代表了找到敏感基因的强大工具。进一步的研究表明,可以将信号定位在杏仁核等更深的结构中,并研究视觉意识与伽马频带信号的关系。我们还发现,前扣带回皮层中的GABA(γ-氨基丁酸)浓度与空间局部静止的MEGβ带功率相关。我们预计进一步的调查将揭示伽马力量与GABA系统之间的其他关系。 与兄弟姐妹和正常对照志愿者相比,精神分裂症患者之间在工作记忆任务期间,在工作记忆任务期间通过Beta Denchronation指数的额叶区域的激活程度差异。以前,我们已经看到,这种激活揭示了与经过良好研究的COMT标记的基因型的相互作用。我们发现,在预期即将到来的任务需求的情况下,发生了前额叶皮层活动的调节。我们已经将此分析扩展到了一组匹配的患者,兄弟姐妹和对照组。当工作记忆任务性能受控时,患者的DLPFC激活明显降低,与任务负荷相对于大胆而言,DLPFC的激活明显区别。 MEG分析隔离了可能反映皮质处理不同方面的工作记忆组件。 我们现在发现,与健康志愿者相比,该成分与精神分裂症患者的行为有明显不同的关系。 现在,我们正在比较跨模式的这些结果,以更好地了解这些措施如何反映大脑的激活。 网络模式和动态的差异是理解临床组潜在病理的关键。 Bassett等人表明,可以证明患者组的功能网络差异,并与认知活动的行为结果有关。 Rutter等人表明,即使在精神分裂症患者中,与正常受试者相比,即使在精神分裂症患者中,也具有伽马功率的降低。这些发现是否与状态差异或性格差异以及是否存在遗传关联有关还有待观察。我们发现了这些记忆任务中涉及的大脑区域的时间顺序的不同模式,这些模式显示了各个受试者的各种个体差异。 使用图理论措施将其扩展为捕获跨大脑区域的模式活动的特性的一种方式。 在面部识别任务中,我们发现了一个不同的区域网络,该网络通过振荡性不同频率的交叉耦合而相互作用。进一步的研究将检查临床组之间的差异。 先前的工作检查了是否可以使用患者和健康的听觉任务培训来响应认知补救策略来重新组织功能性脑网络的重组。 我们能够显示出与改善行为表现有关的大脑活动的功率和连贯性的显着变化。这可能构成生物标志物的基础,该标志物将允许跟踪针对神经精神疾病特定认知缺陷的补救策略的结果。 最近的工作表明,MEG能够显示出广泛的差异关键动态,这对于优化此类网络中的信息处理至关重要。这些最佳动力学对于适当的适应性行为所需的可塑性可能至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Coppola其他文献

Richard Coppola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Coppola', 18)}}的其他基金

Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
  • 批准号:
    8939994
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
NIMH MEG Core Facility
NIMH MEG 核心设施
  • 批准号:
    9567429
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
  • 批准号:
    8342165
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
  • 批准号:
    7735209
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
Integrating EEG/MEG and fMRI
整合 EEG/MEG 和 fMRI
  • 批准号:
    9152120
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
NIMH MEG Core Facility
NIMH MEG 核心设施
  • 批准号:
    9152155
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
NIMH MEG Core Facility
NIMH MEG 核心设施
  • 批准号:
    9352202
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
NIMH MEG Core Facility
NIMH MEG 核心设施
  • 批准号:
    7594611
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
  • 批准号:
    8158141
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:
NIMH MEG Core Facility
NIMH MEG 核心设施
  • 批准号:
    8940166
  • 财政年份:
  • 资助金额:
    $ 57.68万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 57.68万
  • 项目类别:
Contribution of non-canonical dopamine pathways to model-based learning
非典型多巴胺通路对基于模型的学习的贡献
  • 批准号:
    10607923
  • 财政年份:
    2023
  • 资助金额:
    $ 57.68万
  • 项目类别:
Prefrontal circuits underlying the maturation of learned avoidance
习得性回避成熟的前额叶回路
  • 批准号:
    10667631
  • 财政年份:
    2022
  • 资助金额:
    $ 57.68万
  • 项目类别:
Prefrontal circuits underlying the maturation of learned avoidance
习得性回避成熟的前额叶回路
  • 批准号:
    10523023
  • 财政年份:
    2022
  • 资助金额:
    $ 57.68万
  • 项目类别:
Corticoamygdalar regulation of stimulus-outcome memory
皮质杏仁核对刺激结果记忆的调节
  • 批准号:
    10676299
  • 财政年份:
    2021
  • 资助金额:
    $ 57.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了