Predicting Prostate Cancer Aggressiveness
预测前列腺癌的侵袭性
基本信息
- 批准号:8532852
- 负责人:
- 金额:$ 52.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-14 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalCancer PatientCellsCharacteristicsClinicalComplexComputer SimulationDataDevelopmentDiseaseDisease ProgressionElementsEnvironmentEpitheliumGenetic ProgrammingHumanInstructionLibrariesMalignant NeoplasmsMalignant neoplasm of prostateMethodologyMicroscopyModelingMolecularOutcomeOutputPathway interactionsPatientsPhaseProcessResourcesSamplingSignal TransductionStromal CellsTestingTherapeuticTimeTriageTriplet Multiple BirthValidationbasecell typecohortextracellularhuman datahuman diseasein vivomathematical modelneoplastic cellprognostictooltumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Cancer is a complex disease that is driven by interactions between tumor cells but also stromal cells and the microenvironment. We hypothesize that the interaction between the different cellular components of the tumor and the molecular signaling networks within each cell can delineate aggressive prostate cancer. We have selected intracellular and extracellular pathways and cell types that are representative of fundamental processes in human prostate cancer. We will use data from a large cohort of prostate cancer patients. These inputs, derived using state of the art methodology, and provided on a cell-per-cell basis will be used to derive a multi-scale mathematical model. This wealth of human data has not previously been achievable and will serve to both parameterize (on multiple scales) and validate the model. Mathematical modeling will generate a library of network triplets (i.e. intracellular signaling networks for tumor epithelium, normal stroma and reactive stroma) whose interactions can describe patient outcome. Networks will be selected using a genetic algorithm to identify and fix the fittest triplets. Triplets will then be selected based upon their ability to reflect invasive or non-invasive disease over a biologically relevant time period and subject to triage based upon their representation of histochemical characteristics. The most representative triplets will be validated against biological endpoints using in vivo experimentation. The validation phase will recapitulate key elements of the mathematical model in vivo to identify those models most functionally-relevant to human disease. These will be tested in vivo to make predictions that confirm or refute these results in silico. The most robust models (those that pass the testing and validation phases) will be compared to a test cohort of human clinical samples to correlate their characteristics against survival endpoints. Our unique combination of resources and team expertise represents an unparalleled environment providing a synergistic approach to understand prostate cancer beyond the limitations of currently applied scientific methodology. Our models begin and end with human data, assuring that the final products will provide new understanding of human prostate cancer. Three specific aims will be addressed: Specific aim 1) Develop and Parameterize a Multi-scale Mathematical Model of Prostate Cancer Specific Aim 2) Biological Validation and Testing of Candidate Mathematical Outcomes. Specific Aim 3) Clinical Validation of Mathematical Outcomes. RELEVANCE (See instructions): Mathematical models have the potential to act as useful prognostic tools but have not yet been well developed for the study of cancer progression. By basing models on data-rich outputs from deconvolution microscopy examination of clinical samples new models with unparalleled detail will be created and tested. This will allow for the development of new prognostic tools and therapeutic strategies to control disease progression.
描述(由申请人提供):癌症是一种复杂的疾病,由肿瘤细胞以及基质细胞和微环境之间的相互作用驱动。我们假设肿瘤的不同细胞成分与每个细胞内的分子信号网络之间的相互作用可以描述侵袭性前列腺癌。我们选择了代表人类前列腺癌基本过程的细胞内和细胞外途径和细胞类型。我们将使用大量前列腺癌患者的数据。这些输入是使用最先进的方法得出的,并在每个细胞的基础上提供,将用于得出多尺度数学模型。如此丰富的人类数据以前是无法实现的,它将用于参数化(在多个尺度上)和验证模型。数学模型将生成一个网络三联体库(即肿瘤上皮、正常基质和反应性基质的细胞内信号网络),其相互作用可以描述患者的结果。将使用遗传算法来选择网络来识别和修复最适合的三元组。然后将根据三联体在生物学相关时间段内反映侵袭性或非侵袭性疾病的能力来选择三联体,并根据其组织化学特征的表现进行分类。将使用体内实验针对生物学终点来验证最具代表性的三联体。验证阶段将概括体内数学模型的关键要素,以识别与人类疾病功能最相关的模型。这些将在体内进行测试,以做出预测,在计算机中证实或反驳这些结果。最稳健的模型(通过测试和验证阶段的模型)将与人类临床样本的测试队列进行比较,以将其特征与生存终点相关联。我们独特的资源和团队专业知识组合代表了一个无与伦比的环境,提供了一种超越当前应用科学方法限制的协同方法来了解前列腺癌。我们的模型以人类数据开始和结束,确保最终产品将为人类前列腺癌提供新的认识。将解决三个具体目标: 具体目标 1) 开发前列腺癌的多尺度数学模型并参数化 具体目标 2) 候选数学结果的生物学验证和测试。具体目标 3) 数学结果的临床验证。相关性(参见说明):数学模型有潜力成为有用的预后工具,但尚未充分开发用于癌症进展的研究。通过将模型建立在临床样本反卷积显微镜检查的丰富数据输出的基础上,将创建和测试具有无与伦比的细节的新模型。这将有助于开发新的预后工具和治疗策略来控制疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Robertson Allan Anderson其他文献
Alexander Robertson Allan Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Robertson Allan Anderson', 18)}}的其他基金
Project 1: Delta immune Ecology of NSCLC
项目1:NSCLC的Delta免疫生态学
- 批准号:
10730405 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Crowdsourcing optimal cancer treatment strategies that maximize efficacy and minimize toxicity
众包最佳癌症治疗策略,最大限度地提高疗效并最大限度地降低毒性
- 批准号:
9078857 - 财政年份:2016
- 资助金额:
$ 52.45万 - 项目类别:
Crowdsourcing optimal cancer treatment strategies that maximize efficacy and minimize toxicity
众包最佳癌症治疗策略,最大限度地提高疗效并最大限度地降低毒性
- 批准号:
9254517 - 财政年份:2016
- 资助金额:
$ 52.45万 - 项目类别:
Escape from Homeostasis: Integrated Mathmatical and Experimental Investigation
逃离稳态:综合数学和实验研究
- 批准号:
8567244 - 财政年份:2013
- 资助金额:
$ 52.45万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
- 批准号:62305229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
- 批准号:32302027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
向日葵根际微生物调控列当寄生的机制研究
- 批准号:32300104
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
交链格孢菌Alternaria alternata JJY32中杂萜类植物毒素ACTG-toxins的生物合成研究及其结构多样性发掘
- 批准号:32370061
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Experiences of Discrimination, Dysbiosis, and Racial Disparities in Ovarian Cancer
卵巢癌中的歧视、生态失调和种族差异的经历
- 批准号:
10371537 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Strategies to predict and overcome resistance to cancer immunotherapy
预测和克服癌症免疫治疗耐药性的策略
- 批准号:
10638167 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别: