A New Approach to Correct Verification Bias Using Auxiliary Information

使用辅助信息纠正验证偏差的新方法

基本信息

  • 批准号:
    8048932
  • 负责人:
  • 金额:
    $ 19.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-12-20 至 2012-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): New diagnostic tests are developed quickly, and existing diagnostic tests are often rapidly improved after being introduced into practice. Unfortunately, inaccurate and biased evaluations of a test's statistical properties, often the result of a poorly designed or poorly analyzed study, leads to their premature dissemination and to physicians using unreliable tests to make critical treatment decisions. Perhaps the most common cause for the misevaluation of diagnostic tests is verification bias. Verification bias occurs when the verification of a patient's disease status depends on the result of the proposed test or certain patient characteristics associated with disease status. Statistical methods that correct for verification bias are underdeveloped and seldom used, and this application proposes a novel statistical strategy for addressing verification bias that is generalizable and accessible to non- statisticians (with appropriate software package). Even when only a select subset of low-risk negative-screening patients can undergo invasive or costly disease verification, the proposed method will still yield a valid (and cost-efficient) strategy for evaluating the statistical properties of the diagnostic test under consideration. Specifically, this application addresses the following four problems. (Aim 1:) The development of a novel doubly robust estimator for sensitivity, specificity, and positive and negative predictive values that can be used in the presence of verification bias. The estimators are doubly robust in the sense that the actual estimate is correct (i.e., consistent) in moderately large samples if either the model for true disease status or the model for verification status (but not necessarily both) is correct. (Aim 2:) To extend the methods developed in Aim 1 to tests and biomarkers that yield continuous or ordinal outcomes and where the area under a receiver operator characteristic curve is used to measure diagnostic accuracy. (Aim 3:) We 'reverse' our approach to develop a model for predicting disease status, from patient's characteristic and diagnosis, in the presence of verification bias.(Aim 4:) To develop and freely distribute an assessable a software package that will implement these methods for statisticians and clinical researchers alike. Finally, the clinical implications of this proposed research are wide-ranging as much of medicine is diagnostic in nature. These methods have great potential to improve the statistical evaluation of diagnostic tests, which will in turn yield significant improvement in the ability of our physicians to make accurate diagnoses. PUBLIC HEALTH RELEVANCE: Screening tests for disease rely on commonly accepted measures that represent each test's "gold standard" to diagnose true disease status. The gold standard test may, however, be too expensive or too invasive to consider implementing for every subject in a study. Verification bias may arise when the verification of the disease status depends on the result of the screening test. This application proposes to develop novel doubly robust estimators to evaluate the accuracy and efficiency of the screening tests in the presence of verification bias.
描述(申请人提供):新的诊断测试开发迅速,现有的诊断测试在引入实践后往往得到快速改进。不幸的是,对测试统计特性的不准确和有偏见的评估通常是设计不当或分析不当的研究的结果,导致其过早传播,并导致医生使用不可靠的测试来做出关键的治疗决策。也许诊断测试错误评估的最常见原因是验证偏差。当患者疾病状态的验证取决于所提议的测试的结果或与疾病状态相关的某些患者特征时,就会出现验证偏差。纠正验证偏差的统计方法尚未开发且很少使用,本申请提出了一种新的统计策略来解决验证偏差,该策略可推广并可供非统计学家使用(使用适当的软件包)。即使只有一部分低风险阴性筛查患者可以接受侵入性或昂贵的疾病验证,所提出的方法仍然会产生有效(且具有成本效益)的策略来评估所考虑的诊断测试的统计特性。具体而言,本申请解决以下四个问题。 (目标 1:)开发一种新颖的双稳健估计器,用于敏感性、特异性以及阳性和阴性预测值,可在存在验证偏差的情况下使用。如果真实疾病状态的模型或验证状态的模型(但不一定两者都正确),则估计量在中等大样本中的实际估计是正确的(即一致)的意义上是双重稳健的。 (目标 2:)将目标 1 中开发的方法扩展到产生连续或有序结果的测试和生物标志物,并使用接受者操作特征曲线下的面积来测量诊断准确性。 (目标 3:)我们“扭转”我们的方法,在存在验证偏差的情况下,根据患者的特征和诊断来开发预测疾病状态的模型。(目标 4:)开发并免费分发可评估的软件包,该软件包将为统计学家和临床研究人员实施这些方法。最后,这项拟议研究的临床意义是广泛的,因为许多医学本质上都是诊断性的。这些方法在改善诊断测试的统计评估方面具有巨大的潜力,这反过来又会显着提高我们的医生做出准确诊断的能力。 公共卫生相关性:疾病筛查测试依赖于普遍接受的措施,这些措施代表了每个测试诊断真实疾病状态的“黄金标准”。然而,黄金标准测试可能太昂贵或太具有侵入性,以至于无法考虑对研究中的每个受试者实施。当疾病状态的验证取决于筛查测试的结果时,可能会出现验证偏差。该应用建议开发新颖的双稳健估计器,以在存在验证偏差的情况下评估筛选测试的准确性和效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qingxia Chen其他文献

Qingxia Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qingxia Chen', 18)}}的其他基金

DARSaW: Developing, Assessing, and Refining Synthetic Sampling Weights to Improve Generalizability of the All of Us Research Program Data
DARSaW:开发、评估和细化合成采样权重,以提高我们所有人研究计划数据的普遍性
  • 批准号:
    10796237
  • 财政年份:
    2023
  • 资助金额:
    $ 19.43万
  • 项目类别:
Time-dependent and bidirectional effect of oxidative stress - a missing piece of the free radical theory of cancer and its potential implications
氧化应激的时间依赖性和双向效应——癌症自由基理论的缺失部分及其潜在影响
  • 批准号:
    10063979
  • 财政年份:
    2019
  • 资助金额:
    $ 19.43万
  • 项目类别:
Time-dependent and bidirectional effect of oxidative stress - a missing piece of the free radical theory of cancer and its potential implications
氧化应激的时间依赖性和双向效应——癌症自由基理论的缺失部分及其潜在影响
  • 批准号:
    10520027
  • 财政年份:
    2019
  • 资助金额:
    $ 19.43万
  • 项目类别:
Time-dependent and bidirectional effect of oxidative stress - a missing piece of the free radical theory of cancer and its potential implications
氧化应激的时间依赖性和双向效应——癌症自由基理论的缺失部分及其潜在影响
  • 批准号:
    10312770
  • 财政年份:
    2019
  • 资助金额:
    $ 19.43万
  • 项目类别:
Time-dependent and bidirectional effect of oxidative stress - a missing piece of the free radical theory of cancer and its potential implications
氧化应激的时间依赖性和双向效应——癌症自由基理论的缺失部分及其潜在影响
  • 批准号:
    9887609
  • 财政年份:
    2019
  • 资助金额:
    $ 19.43万
  • 项目类别:
A New Approach to Correct Verification Bias Using Auxiliary Information
使用辅助信息纠正验证偏差的新方法
  • 批准号:
    8207859
  • 财政年份:
    2010
  • 资助金额:
    $ 19.43万
  • 项目类别:

相似国自然基金

蛋白法尼基化修饰对水稻边界区域和腋生分生组织发育的调控机制
  • 批准号:
    32300312
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于能动性-结构组态效应的区域创业活动空间依赖与突破
  • 批准号:
    42371173
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
包含低序列复杂度区域蛋白质相分离的跨尺度构象关联性研究
  • 批准号:
    22303060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于原位检-监测协同的大面积表层混凝土传输性能劣化区域快速识别方法研究
  • 批准号:
    52378218
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向复杂应急区域的移动基站信号覆盖问题研究
  • 批准号:
    72301209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
Hawaii Minority Health and Cancer Disparities SPORE
夏威夷少数民族健康与癌症差异 SPORE
  • 批准号:
    10716152
  • 财政年份:
    2023
  • 资助金额:
    $ 19.43万
  • 项目类别:
Early life metal exposure, the gut microbiome, and neurodevelopment in childhood
生命早期的金属暴露、肠道微生物组和儿童期的神经发育
  • 批准号:
    10883857
  • 财政年份:
    2023
  • 资助金额:
    $ 19.43万
  • 项目类别:
A proprietary digital platform for precision patient identification and enrollment of clinical trials for rare kidney diseases
用于精确识别患者和注册罕见肾脏疾病临床试验的专有数字平台
  • 批准号:
    10822581
  • 财政年份:
    2023
  • 资助金额:
    $ 19.43万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 19.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了