Molecular photothermal therapy of cancer using targeted metal nanoparticles
使用靶向金属纳米粒子的癌症分子光热疗法
基本信息
- 批准号:8111827
- 负责人:
- 金额:$ 32.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAdjuvant TherapyAlgorithmsAmplifiersAnimal Cancer ModelBindingBiological MarkersBiomechanicsBiomedical EngineeringBlood flowBreast Cancer TreatmentCancerousCause of DeathCellsClinicalColorComputer softwareContrast MediaCustomDiagnosisDiseaseElasticityElementsEnsureEpidermal Growth Factor ReceptorFiberFrequenciesFunctional ImagingGoalsGoldHeart DiseasesHeatingHigh temperature of physical objectHumanHuman CharacteristicsImageImaging TechniquesImaging technologyIndocyanine GreenInduced HyperthermiaInjuryInvadedLabelLaboratoriesLasersLesionLightLiving ArrangementMalignant NeoplasmsMammary Gland ParenchymaMammary NeoplasmsMeasuresMechanicsMediatingMemoryMetalsMolecularMonitorMonoclonal AntibodiesNecrosisNormal tissue morphologyOperative Surgical ProceduresOpticsOutcomePhysiologic pulsePhysiologicalProcessPropertyResearchResolutionRoche brand of trastuzumabScanningShapesSiteSlideSystemTechniquesTemperatureTestingTheoretical StudiesTherapeuticTherapeutic procedureTimeTissue ModelTissue SampleTissuesTransducersTreatment outcomeTumor TissueUltrasonicsUltrasonographyUnited StatesWorkbasebiomaterial compatibilitycancer cellcancer therapycell growthclinically relevantcomputerized data processingdesigndetectorimage processingimprovedin vivointravenous injectionirradiationkillingsmalignant breast neoplasmmouse modelnanoparticlenanorodnanosecondnanosensorsoverexpressionparticleperformance testsplasmonicsprogramsprototypepublic health relevanceresearch studyresponsesuccesstherapy outcometissue phantomtreatment planningtumoruptake
项目摘要
DESCRIPTION (provided by applicant):
Curative treatment of local and/or regional breast cancer requires surgery and adjuvant therapy such as thermotherapy. In thermal treatment of breast cancer, the tissue is exposed to high temperatures that damage and kill cancer cells with minimal injury to normal tissues. The overall goal of our research program is to develop an image-guided, molecular specific photothermal therapy of cancer using targeted metal nanoparticles. Specifically, using targeted plasmonic nanosensors and an advanced, in-vivo, noninvasive, functional, molecular specific imaging technology (i.e., integrated ultrasound, photoacoustic and elasticity imaging), photothermal therapy can be greatly improved. Indeed, before the therapeutic procedure, using ultrasound (anatomical and blood flow imaging) and elastography (biomechanical functional imaging), the tumor will be non-invasively imaged to develop an appropriate treatment plan. Furthermore, the delivery and interaction of molecular specific photoabsorbers with cancerous tissue will be imaged using photoacoustics - a technique capable of in-vivo imaging of plasmonic nanoparticles at sufficient depth. During the therapy, the real-time imaging system will be used to guide photothermal therapy by tracking the temperature rise and, therefore, monitoring cancer treatment. Finally, after the therapy, the combined imaging will be used to accurately assess the short-term and the long-term treatment outcome. The central theme of the current application is threefold: to develop multifunctional plasmonic nanoparticles acting as both photoabsorbers for photothermal therapy and contrast agent for molecular and thermal imaging; to design and build a laboratory prototype of the integrated ultrasound, photoacoustic and elasticity imaging system; and to initially test the developed nanoparticles and imaging technology in 3-D tissue phantoms and small animal cancer model ex vivo and in vivo. Therefore, all theoretical and experimental studies will be conducted to evaluate the applicability of the molecular specific, image-guided photothermal therapy to treat cancer. At the end of the study, we will outline the design and technical specifications of a clinical image- guided photothermal therapy system.
PUBLIC HEALTH RELEVANCE:
Cancer is a disease characterized by uncontrollable, abnormal growth of cells. The resulting tumor can invade and destroy the surrounding healthy tissue. Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Breast cancer treatment often requires surgery and adjuvant therapy such as thermotherapy. In thermal treatment of breast cancer the tissue is exposed to high temperatures that damage and kill cancer cells with minimal injury to normal tissues. The primary goal of thermal treatment of cancer is to selectively heat a small volume of cancerous cells leading to tumor necrosis while protecting the surrounding healthy tissue. Thus, to successfully perform photothermal cancer therapy, an imaging technique that can help effectively plan, guide and monitor the photothermal therapy is needed. The overall goal of our research program is to develop the targeted multifunctional nanoparticles and the combined ultrasound, photoacoustic and elasticity imaging system to assist photothermal therapy. Before the therapeutic procedure, the tumor will be non-invasively imaged to develop an appropriate treatment plan. During the therapy, the real-time imaging system will be used to guide photothermal therapy by tracking the temperature rise and monitoring the cancer treatment. Finally, after the therapy, the combined imaging will be used to accurately assess the short-term and the long-term treatment outcome.
描述(由申请人提供):
局部和/或区域性乳腺癌的治愈性治疗需要手术和辅助治疗,例如热疗。在乳腺癌的热处理中,组织暴露在高温下,破坏并杀死癌细胞,同时对正常组织的伤害最小。 我们研究计划的总体目标是使用靶向金属纳米颗粒开发一种图像引导的分子特异性光热疗法。具体来说,使用靶向等离子体纳米传感器和先进的体内、非侵入性、功能性、分子特异性成像技术(即集成超声、光声和弹性成像),可以大大改善光热疗法。事实上,在治疗过程之前,使用超声波(解剖和血流成像)和弹性成像(生物力学功能成像),将对肿瘤进行非侵入性成像,以制定适当的治疗计划。此外,分子特异性光吸收剂与癌组织的传递和相互作用将使用光声学进行成像,这是一种能够在足够深度对等离子体纳米粒子进行体内成像的技术。在治疗过程中,实时成像系统将用于通过跟踪温度上升来指导光热治疗,从而监测癌症治疗。最后,治疗后,联合成像将用于准确评估短期和长期治疗结果。 当前应用的中心主题有三个:开发多功能等离子体纳米颗粒,既可作为光热治疗的光吸收剂,又可作为分子和热成像的造影剂;设计并建造集成超声、光声和弹性成像系统的实验室原型;并初步在 3D 组织模型和小动物癌症模型离体和体内测试所开发的纳米颗粒和成像技术。因此,所有的理论和实验研究都将用于评估分子特异性、图像引导光热疗法治疗癌症的适用性。在研究结束时,我们将概述临床图像引导光热治疗系统的设计和技术规格。
公共卫生相关性:
癌症是一种以细胞失控、异常生长为特征的疾病。由此产生的肿瘤可以侵入并破坏周围的健康组织。癌症是美国第二大死因,仅次于心脏病。 乳腺癌治疗通常需要手术和热疗等辅助治疗。在乳腺癌的热处理中,组织暴露在高温下,从而破坏并杀死癌细胞,同时对正常组织的伤害最小。 癌症热处理的主要目标是选择性地加热少量癌细胞,导致肿瘤坏死,同时保护周围的健康组织。因此,为了成功地进行光热癌症治疗,需要一种能够帮助有效规划、指导和监测光热治疗的成像技术。 我们研究项目的总体目标是开发靶向多功能纳米颗粒以及组合超声、光声和弹性成像系统以辅助光热治疗。在治疗程序之前,将对肿瘤进行非侵入性成像,以制定适当的治疗计划。在治疗过程中,实时成像系统将通过跟踪温度上升和监测癌症治疗来指导光热治疗。最后,治疗后,联合成像将用于准确评估短期和长期治疗结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STANISLAV Y EMELIANOV其他文献
STANISLAV Y EMELIANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STANISLAV Y EMELIANOV', 18)}}的其他基金
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10701849 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10587560 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Ultrasound-guided photoacoustic imaging and tracking of stem cells in the spinal cord
超声引导光声成像和脊髓干细胞追踪
- 批准号:
9978212 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10397429 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10611905 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10221069 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10032744 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10179400 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10653277 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10439504 - 财政年份:2019
- 资助金额:
$ 32.29万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Maps as a service: A systematic approach to the production of tactile and audio/vibrational maps for visually impaired users
地图即服务:为视障用户制作触觉和音频/振动地图的系统方法
- 批准号:
10720207 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别: