Blood Systems Biology
血液系统生物学
基本信息
- 批准号:7934185
- 负责人:
- 金额:$ 77.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAgeAgingAgonistAlgorithmsAntibodiesAntiplatelet DrugsBiological AssayBiological Neural NetworksBiologyBiomedical EngineeringBloodBlood ClotBlood PlateletsBlood coagulationBlood specimenCalciumCalibrationClinicalCoagulation ProcessCodeCollagenComplexComputer SimulationConvectionCytoplasmic GranulesDataData SetDatabasesDefectDepositionDevelopmentDiamondDiffusionDiseaseEpoprostenolEpoprostenol ReceptorsEthnic OriginEthnic groupEventF2R geneFeedbackFemaleFlow CytometryGender RoleGenomicsGrowthHematocrit procedureHemorrhageHumanIn VitroIndividualIntegrinsKineticsLaser injuryLiquid substanceMapsMeasurementMeasuresMetabolic PathwayMetabolismMicrofluidic MicrochipsMicrofluidicsModelingMonitorMusMutationNeural Network SimulationOperative Surgical ProceduresP-SelectinPAWR genePathway interactionsPatientsPeptide HydrolasesPhenotypePhosphatidylserinesPlasmaPlatelet ActivationProbabilityProductionReactionResearchRisk AssessmentScanningSignal PathwaySignal TransductionSimulateStagingStenosisSurfaceSystems BiologyTestingThrombinThromboplastinThrombosisThrombusTimeTimeLineTracerTrainingTransgenic MiceVWF geneValidationVenousbrassclinically relevantcombinatorialexperiencehemodynamicsin vivoinhibitor/antagonistloss of function mutationmalemouse modelpublic health relevancereceptorrelease of sequestered calcium ion into cytoplasmresearch studyresponsesimulationstroke therapysynergismvectorweb site
项目摘要
DESCRIPTION (provided by applicant): This proposal focuses on the integrative and high throughput functional phenotyping of human blood, matched by Systems Biology and Bioengineering approaches for patient-specific training of computer models to identify and quantify responses to clotting triggers or pharmacological agents. High throughput phenotyping of individual blood samples will be used to train bottom-up and top-down models of blood clotting under static, venous, and arterial hemodynamic conditions. Specific Aims are: Aim 1: Use high throughput intracellular calcium measurements to train neural network models to predict patient-specific response to combinatorial and sequential stimulation, thus testing the milieu that platelets actually experience during thrombosis. Furthermore, high throughput measures of inside-out signaling will be implemented for the development of large scale computational simulation of platelet metabolic pathways. Aim 2: Along with platelet phenotyping, we will use validated high throughput blood thrombin phenotyping to identify pathways and synergisms that are defective in patients with existing but undefined defects. These approaches then allow the development of a full platelet-plasma computer simulation of coagulation. Aim 3: Using validated tissue factor microarray-flow chambers and microfluidic chambers, we will functionally phenotype thrombus production and clot stability for normal donors and patients under hemodynamic conditions and pharmacological modulation. Aim 4: In vivo studies using a mouse laser injury model to follow evolving intrathrombic spatial gradients. The flow studies are supported by advanced multiscale Lattice Kinetic Monte Carlo (LKMC) simulation of clotting under flow using data from all three specific aims. These approaches represent the first full integration of platelet signaling models with realistic and hierarchical hemodynamic/mass transport simulations that regulate adhesive bond function and plasma protease networks. Better elucidation and quantitative measurement of blood reactions and platelet signaling pathways under hemodynamic conditions are directed at clinical needs in thrombosis risk assessment, anti-coagulation therapy during surgery, platelet targeted therapies, and stroke research.
PUBLIC HEALTH RELEVANCE: Blood is ideal for Systems Biology research since it is easily obtained from donors or patients, amenable to high throughput liquid handling experiments, and clinically relevant. Clotting and bleeding diseases of aging are seldom due to acquired mutations and this drives the need for advanced functional phenotyping in concert with Systems Biology and other sequencing/genomic approaches.
描述(由申请人提供):该提案侧重于人类血液的综合和高通量功能表型分析,并与系统生物学和生物工程方法相匹配,用于针对患者的计算机模型训练,以识别和量化对凝血触发因素或药物的反应。个体血液样本的高通量表型分析将用于训练静态、静脉和动脉血流动力学条件下自下而上和自上而下的凝血模型。具体目标是: 目标 1:使用高通量细胞内钙测量来训练神经网络模型,以预测患者对组合和顺序刺激的特异性反应,从而测试血小板在血栓形成过程中实际经历的环境。此外,将实施由内而外信号传导的高通量测量,以开发血小板代谢途径的大规模计算模拟。目标 2:除了血小板表型分析之外,我们将使用经过验证的高通量血液凝血酶表型分析来识别存在但未明确缺陷的患者中存在缺陷的途径和协同作用。然后,这些方法可以开发完整的血小板-血浆凝血计算机模拟。目标 3:使用经过验证的组织因子微阵列流室和微流体室,我们将对正常供体和患者在血流动力学条件和药理调节下的血栓产生和凝块稳定性进行功能表型分析。目标 4:使用小鼠激光损伤模型来跟踪不断变化的血栓内空间梯度的体内研究。流动研究得到先进的多尺度晶格动力学蒙特卡罗 (LKMC) 模拟的支持,该模拟使用来自所有三个特定目标的数据进行流动下的凝血。这些方法代表了血小板信号传导模型与调节粘合功能和血浆蛋白酶网络的真实且分层的血流动力学/质量传输模拟的首次完全集成。更好地阐明和定量测量血流动力学条件下的血液反应和血小板信号通路,旨在满足血栓形成风险评估、手术期间抗凝治疗、血小板靶向治疗和中风研究的临床需求。
公共卫生相关性:血液是系统生物学研究的理想选择,因为它很容易从捐赠者或患者那里获得,适合高通量液体处理实验,并且具有临床相关性。衰老引起的凝血和出血疾病很少是由获得性突变引起的,这推动了对与系统生物学和其他测序/基因组方法相结合的高级功能表型分析的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT L DIAMOND其他文献
SCOTT L DIAMOND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT L DIAMOND', 18)}}的其他基金
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9759659 - 财政年份:2018
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9292339 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9103240 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
8908392 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Core C: Genomics and High Throughput Screening Core
核心 C:基因组学和高通量筛选核心
- 批准号:
8066104 - 财政年份:2010
- 资助金额:
$ 77.19万 - 项目类别:
相似国自然基金
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
- 批准号:
10750482 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
- 批准号:
10539405 - 财政年份:2022
- 资助金额:
$ 77.19万 - 项目类别:
Wearable, Graphene-based Flexible Sensors for Chronic Monitoring of Venous Thromboembolism for High-Risk Patients
用于长期监测高危患者静脉血栓栓塞的可穿戴石墨烯柔性传感器
- 批准号:
10505269 - 财政年份:2022
- 资助金额:
$ 77.19万 - 项目类别:
Determining the Platelet Signaling Pathway(s) Critical in Venous Thrombosis Pathogenesis" it might change in the process of editing
确定静脉血栓形成发病机制中至关重要的血小板信号通路”,在编辑过程中可能会发生变化
- 批准号:
10540297 - 财政年份:2021
- 资助金额:
$ 77.19万 - 项目类别: