Developing diagnostic and therapeutic stem cells for cancer therapy
开发用于癌症治疗的诊断和治疗干细胞
基本信息
- 批准号:8211001
- 负责人:
- 金额:$ 35.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-18 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:ADP ribosylationAffectAngiogenesis InhibitorsApoptosisApoptoticAssesAttenuatedBinding SitesBioluminescenceBostonBrainBrain NeoplasmsCaspaseCell DeathCell Death InhibitionCell LineCell ProliferationCell SurvivalCell TherapyCellsCessation of lifeCetuximabClinical DataClinical TrialsCollaborationsCombined Modality TherapyCytotoxic ChemotherapyCytotoxic agentDeath DomainDeath Receptor 5DepositionDiagnosticDiphtheria ToxinDown-RegulationEGF geneEffectivenessEmbryoEngineeringEpidermal Growth Factor ReceptorExotoxinsG CellsGlioblastomaGliomaHalf-LifeHomingHospitalsHumanHuman EngineeringImageImmunotoxinsImplantIn VitroInterleukin-13LaboratoriesLentivirus VectorLigandsMalignant - descriptorMammalian CellMediatingMesenchymal Stem CellsModelingMolecular WeightMonoclonal AntibodiesMusNatureNetherlandsPathologyPathway interactionsPeptide Elongation Factor 2PharmacodynamicsPlasmidsPrimary Brain NeoplasmsProliferatingProtein BiosynthesisProtein IsoformsProto-Oncogene Proteins c-aktPseudomonasRadiation therapyReceptor SignalingResearchResistanceSignal PathwaySignal TransductionSiteStem cellsTNFRSF10A geneTNFSF10 geneTestingTherapeuticTherapy Clinical TrialsTimeToxinTransplantationTreatment EfficacyTumor Necrosis Factor-alphaUniversitiesVariantWorkadult stem cellbasebrain tissuecancer therapycell killingcombinatorialcytokinecytotoxicdeath receptor-4designhuman TNFRSF10A proteinin vivoinnovationinterleukin-13 receptorintravital fluorescence microscopyintravital microscopykillingsmouse modelmutantnanobodiesneoplastic cellnerve stem cellneurosurgerynoveloptical imagingoverexpressionpre-clinicalpublic health relevancereceptorstem cell fatestem cell therapytargeted deliverytherapeutic proteintime usetomographytumortumor growth
项目摘要
DESCRIPTION (provided by applicant): Recent evidence indicates that both embryonic and adult stem cells have enormous therapeutic potential for cell therapy. In prior research, we have established that: a) therapeutically engineered stem cells migrate extensively to tumors and to infiltrating deposits in the brain and have apoptotic and antiangiogenic effects when transplanted into mouse models of glioma; and b) the dynamics of receptor targeted anti-tumor therapies and fate of stem cells can be visualized in real time in vivo. In this proposal, we will create toxin resistant human mesenchymal stem cells (MSC) for on-site delivery of targeted nanobodies and cytotoxic agents to simultaneously block proliferation and induce killing of tumor cells without affecting the normal brain. Specifically, MSC will be engineered to express targeted therapeutic proteins directed against overexpressed EGFR and specifically expressed IL13Ra2 and death receptors (DR)4/5 in glioma cells. In close collaboration with Henegouwen lab (Utrecht University, The Netherlands) which is leading efforts in developing low molecular weight, highly soluble EGFR specific nanobodies (EGFR-NB), we have recently shown that mammalian cells can be employed to express secretable bivalent EGFR nanobodies. We will initially express EGFR-NB in MSC and study the effect of EGFR-NB on EGFR signaling and cell proliferation in a panel of primary glioma cells and CD133+ primary brain tumor cells in an ongoing collaboration with Settleman lab (MGH, Boston). A number of studies have shown synergistic anti-tumor effects when EGFR signaling antagonists are combined with cytokines. Two different cytotoxic therapies based on selectively targeting glioma cells will be tested. In the first approach we will create toxin resistant MSC in an ongoing collaboration with Rich lab (B&W Hospital, Boston) and engineer MSC expressing EGFR-NB and IL13R-targeted Diphtheria toxin (DT) which is known to induce cell death by inhibition of protein synthesis through ADP-ribosylation of elongation factor-2 (EF-2). In the second approach we will create MSC expressing EGFR-NB and S-TRAIL, which we have extensively characterized and shown to selectively induce apoptosis via up-regulated death receptors (DR)-4/5 in proliferating glioma cells. Both approaches will be tested for their efficacy in culture and in vivo in established glioma lines. Based on these findings, we will utilize the most efficient therapeutic MSC in a highly invasive primary mouse model of glioma. We hypothesize that on site delivery of therapeutic MSC will result in simultaneous down-regulation of cell survival pathways and activation of death pathways thus resulting in enhanced eradication of gliomas. The integration of genetically engineered fluorescent and bioluminescent imaging markers and in vivo imaging in close collaboration with Weissleder lab (MGH, Boston) will allow us to follow delivery and fate of MSC and to asses their therapeutic efficacy in vivo These studies are expected to have a major impact in developing novel stem cell therapies that will eventually be compatible with clinical trials.
PUBLIC HEALTH RELEVANCE: In this proposal we will engineer human mesenchymal stem cells (MSC) to express targeted therapeutic proteins directed against overexpressed receptors in glioma cells. Two different combinatorial therapy approaches based on targeting cell proliferation and death pathways in glioma cells will be explored. The developed agents and strategies will be designed to be clinically translatable and should have a major impact in developing efficient therapies for brain tumors.
描述(由申请人提供):最近的证据表明胚胎干细胞和成体干细胞都具有细胞治疗的巨大治疗潜力。在之前的研究中,我们已经确定:a) 治疗性工程干细胞广泛迁移至肿瘤并浸润大脑沉积物,当移植到神经胶质瘤小鼠模型中时,具有细胞凋亡和抗血管生成作用; b) 受体靶向抗肿瘤治疗的动态和干细胞的命运可以在体内实时可视化。在该提案中,我们将创建抗毒素人间充质干细胞(MSC),用于现场递送靶向纳米抗体和细胞毒性剂,以同时阻止肿瘤细胞增殖并诱导杀死肿瘤细胞,而不影响正常大脑。具体来说,MSC 将被设计为表达针对神经胶质瘤细胞中过度表达的 EGFR 和特异性表达的 IL13Ra2 和死亡受体 (DR)4/5 的靶向治疗蛋白。与 Henegouwen 实验室(荷兰乌得勒支大学)密切合作,该实验室在开发低分子量、高溶解性 EGFR 特异性纳米抗体 (EGFR-NB) 方面处于领先地位,最近我们发现哺乳动物细胞可用于表达可分泌的二价 EGFR 纳米抗体。我们将首先在 MSC 中表达 EGFR-NB,并与 Settleman 实验室(MGH,波士顿)持续合作,研究 EGFR-NB 对一组原代胶质瘤细胞和 CD133+ 原代脑肿瘤细胞中 EGFR 信号传导和细胞增殖的影响。多项研究表明,当 EGFR 信号拮抗剂与细胞因子联合使用时,可产生协同抗肿瘤作用。将测试两种基于选择性靶向神经胶质瘤细胞的不同细胞毒性疗法。在第一种方法中,我们将与 Rich 实验室(波士顿 B&W 医院)持续合作,创建抗毒素 MSC,并设计表达 EGFR-NB 和 IL13R 靶向白喉毒素 (DT) 的 MSC,已知白喉毒素可通过抑制蛋白质来诱导细胞死亡通过延伸因子 2 (EF-2) 的 ADP 核糖基化合成。在第二种方法中,我们将创建表达 EGFR-NB 和 S-TRAIL 的 MSC,我们对其进行了广泛的表征,并证明其通过上调的死亡受体 (DR)-4/5 在增殖的神经胶质瘤细胞中选择性诱导细胞凋亡。这两种方法都将在已建立的神经胶质瘤系中测试其在培养物和体内的功效。基于这些发现,我们将在高侵袭性原代小鼠神经胶质瘤模型中利用最有效的治疗性 MSC。我们假设,治疗性 MSC 的现场递送将导致细胞存活途径的同时下调和死亡途径的激活,从而增强神经胶质瘤的根除。与 Weissleder 实验室(MGH,波士顿)密切合作,将基因工程荧光和生物发光成像标记物与体内成像相结合,将使我们能够跟踪 MSC 的递送和命运,并评估其体内治疗效果。对开发最终与临床试验兼容的新型干细胞疗法产生重大影响。
公共健康相关性:在这项提案中,我们将改造人类间充质干细胞(MSC)来表达针对神经胶质瘤细胞中过度表达的受体的靶向治疗蛋白。将探索基于靶向神经胶质瘤细胞的细胞增殖和死亡途径的两种不同的组合治疗方法。所开发的药物和策略将被设计为可临床转化,并且应该对开发脑肿瘤的有效疗法产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khalid A Shah其他文献
Khalid A Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khalid A Shah', 18)}}的其他基金
Targeting metastatic tumors with engineered cellular therapies
通过工程细胞疗法靶向转移性肿瘤
- 批准号:
10774430 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
Gene Edited and Engineered Tumor Cell Therapeutics for Cancer
基因编辑和工程化肿瘤细胞治疗癌症
- 批准号:
10184164 - 财政年份:2021
- 资助金额:
$ 35.43万 - 项目类别:
Gene Edited and Engineered Tumor Cell Therapeutics for Cancer
基因编辑和工程化肿瘤细胞治疗癌症
- 批准号:
10386860 - 财政年份:2021
- 资助金额:
$ 35.43万 - 项目类别:
Gene Edited and Engineered Tumor Cell Therapeutics for Cancer
基因编辑和工程化肿瘤细胞治疗癌症
- 批准号:
10589097 - 财政年份:2021
- 资助金额:
$ 35.43万 - 项目类别:
Engineered and Encapsulated Stem Cells for Resected Brain Tumors
用于切除脑肿瘤的工程化和封装干细胞
- 批准号:
10578780 - 财政年份:2019
- 资助金额:
$ 35.43万 - 项目类别:
Engineered and Encapsulated Stem Cells for Resected Brain Tumors
用于切除脑肿瘤的工程化和封装干细胞
- 批准号:
10355476 - 财政年份:2019
- 资助金额:
$ 35.43万 - 项目类别:
Fate and efficacy of targeted therapies for metastatic tumors
转移性肿瘤靶向治疗的命运和疗效
- 批准号:
9176644 - 财政年份:2016
- 资助金额:
$ 35.43万 - 项目类别:
Fate and efficacy of targeted therapies for metastatic tumors
转移性肿瘤靶向治疗的命运和疗效
- 批准号:
9428627 - 财政年份:2016
- 资助金额:
$ 35.43万 - 项目类别:
In vivo imaging of encapsulated stem cells in mouse models of tumor resection
肿瘤切除小鼠模型中封装干细胞的体内成像
- 批准号:
8599446 - 财政年份:2013
- 资助金额:
$ 35.43万 - 项目类别:
In vivo imaging of encapsulated stem cells in mouse models of tumor resection
肿瘤切除小鼠模型中封装干细胞的体内成像
- 批准号:
9405283 - 财政年份:2013
- 资助金额:
$ 35.43万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Intensive postpartum antihypertensive treatment to improve women's cardiovascular health
产后强化抗高血压治疗可改善女性心血管健康
- 批准号:
10664483 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
PBRM1 bromodomain missense mutations in ccRCC vascular signaling
ccRCC 血管信号传导中的 PBRM1 溴结构域错义突变
- 批准号:
10604440 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
Ischemia/Reperfusion injury and Myocardial edema
缺血/再灌注损伤和心肌水肿
- 批准号:
10718260 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
Bile acid receptor signaling in retinopathy of prematurity
早产儿视网膜病变中胆汁酸受体信号传导
- 批准号:
10568100 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别: