Synaptic Circuit Organization of Motor Cortex
运动皮层的突触电路组织
基本信息
- 批准号:8303317
- 负责人:
- 金额:$ 30.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2013-09-14
- 项目状态:已结题
- 来源:
- 关键词:AffectAreaAutomobile DrivingBiological ModelsBrainCerebral hemisphereClinicalDataData SetDetectionDiseaseEfferent PathwaysEpilepsyEventFunctional disorderFutureHealthImpairmentIn VitroInterneuronsInvestigationLabelLasersLinkLocationMapsMeasuresMediatingMethodsModelingMotorMotor CortexMotor outputMovementMovement DisordersMusNeocortexNeurologicNeuronsOutputParalysedParaplegiaPathway interactionsPatternPhenotypePhysiologicalPhysiologyPlasticsPropertyResolutionScanningSensoryShort-Term CourseSignal TransductionSliceSourceStrontiumSurveysSynapsesSynaptic plasticitySystemTechniquesTestingTimeTracerWild Type MouseWorkbasecomputerized data processinggray matterhippocampal pyramidal neuroninsightinterdisciplinary approachmotor controlmotor disordermotor learningneocorticalneural circuitneuropathologynovelpostsynapticpresynapticprogramsresearch studyscaffoldsensory cortexspatiotemporal
项目摘要
DESCRIPTION (provided by applicant): We propose an experimental program aimed at determining basic cellular/synaptic mechanisms of local synaptic circuit organization in mouse primary motor cortex (M1). We present a multidisciplinary approach using laser scanning photostimulation (LSPS), pair recording, and related techniques for quantitative analysis of neocortical synaptic circuits. Our guiding hypothesis, based on preliminary data, is that local circuits in M1 - unlike sensory cortex - are adapted for `top down' control of motor output signals, in the form of massively convergent excitatory circuits from upper layers (layer 2/3) onto deeper layers (layers 5A, 5B, 6), and that this descending projection is composed of parallel intracortical pathways that are functionally specialized to integrate synaptic signals for corticospinal, corticostriatal, and other major M1 outputs. Our specific aims, testing different aspects of this general hypothesis, are as follows. First, because cortical layering is a primary determinant of cortical `wiring', in brain slice experiments we will record individually from pyramidal neurons located in all cortical layers in M1, and map the laminar and horizontal sources of excitatory synaptic input. This unique connectivity matrix data set will allow us to determine (for the first time for any cortical area) the average overall excitatory circuit organization in terms of the laminar locations of its neurons. Second, because cortical layers contain functionally distinct subclasses of neurons, we will determine the local circuit organization of major M1 neuronal subclasses. We will use retrograde tracers to identify corticospinal, corticocortical, and corticostriatal neurons for LSPS analysis. We will extend this analysis to determine circuit phenotypes for genetically labeled subclasses as well. Third, because the specific circuits identified above are likely to be functionally specialized, we will analyze their synaptic physiology using pair recording methods to measure unitary connection properties, including the amplitude, time course, and short term plasticity of synaptic signals. We will extend this analysis to the level of single-synapse properties through a novel combination of LSPS mapping and strontium treatment to isolate uniquantal events. Fourth, we will develop and use random access photostimulation to examine the efficacy and timing of feedforward synaptic excitation and inhibition within the M1 local circuit. This will reveal mechanisms of synaptic integration and coincidence detection in identified M1 synaptic pathways. The results will provide radically new insights for understanding the synaptic organization of M1 in wild type mice, providing a quantitative, mechanistic framework for future investigations of synaptic circuit pathophysiology in epilepsy, paralysis, and other disorders of voluntary motor control. PUBLIC HEALTH RELEVANCE Voluntary movements depend on synaptic circuits in the motor area of the neocortex (cortical gray matter) in the cerebral hemispheres. Here we propose a systematic, quantitative experimental approach that will elucidate fundamental synaptic signaling mechanisms and pathways in mammalian motor neocortex at the cellular level. The results will provide a much needed quantitative framework for understanding cortical circuit pathophysiology in epilepsy, paralysis, and related motor disorders.
描述(由申请人提供):我们提出了一个实验程序,旨在确定小鼠初级运动皮层(M1)中局部突触组织组织的基本细胞/突触机制。我们使用激光扫描光刺激(LSP),成对记录和相关技术提出了多学科方法,以定量分析新皮质突触电路。我们基于初步数据的指导假设是,M1中的局部电路(与感觉皮层不同)适用于对电动机输出信号的“自上而下”控制,以大量收敛的兴奋性回路的形式(第2/3层)在较深的层上(5A,5B,6层),并且该下降投影由平行的皮质内途径组成,这些途径在功能上专门用于整合皮质脊髓,皮质层状,皮质层状和其他主要M1输出的突触信号。我们的具体目的测试了这一一般假设的不同方面,如下所示。首先,由于皮质分层是皮质“接线”的主要决定因素,因此在脑切片实验中,我们将从位于M1中所有皮质层的金字塔神经元中单独记录,并绘制兴奋性突触输入的层状和水平源。这个独特的连接矩阵数据集将使我们能够(对于任何皮质区域)确定(首次在任何皮质区域),就其神经元的层流位置而言,平均总体兴奋性电路组织。其次,由于皮质层包含神经元的功能不同的亚类,因此我们将确定主要M1神经元亚类的局部电路组织。我们将使用逆行示踪剂来鉴定皮质脊髓,皮质皮质和皮质纹状体神经元进行LSPS分析。我们将扩展此分析,以确定遗传标记子类的电路表型。第三,由于上面确定的特定电路可能是功能专业的,因此我们将使用配对记录方法分析它们的突触生理,以测量单一连接性能,包括突触信号的幅度,时间过程和短期可塑性。我们将通过LSPS映射和跨片治疗的新型组合将此分析扩展到单个隔离特性的水平,以分离唯一的事件。第四,我们将开发和使用随机访问光刺激,以检查M1局部电路中前馈突触激发和抑制的功效和时机。这将揭示已识别的M1突触途径中突触整合和重合检测的机制。该结果将为了解野生型小鼠中M1的突触组织提供根本新的见解,从而为未来的癫痫,瘫痪和其他自愿运动控制疾病的突触性病理生理学的未来研究提供了定量的机械框架。公共卫生相关性自愿运动取决于脑半球的新皮层运动区域(皮质灰质)的突触电路。在这里,我们提出了一种系统的定量实验方法,该方法将阐明细胞水平的哺乳动物运动新皮层中的基本突触信号传导机制和途径。结果将提供一个急需的定量框架,以了解癫痫,瘫痪和相关运动障碍的皮质回路病理生理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon M Shepherd其他文献
Gordon M Shepherd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon M Shepherd', 18)}}的其他基金
Towards a neurobiology of "oromanual" motor control: behavioral analysis and neural mechanisms
走向“手动”运动控制的神经生物学:行为分析和神经机制
- 批准号:
10819032 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Bidirectional circuits of locus ceruleus and motor cortex neurons
蓝斑和运动皮层神经元的双向回路
- 批准号:
10447235 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Developing new paradigms for mouse forelimb sensorimotor circuit analysis
开发小鼠前肢感觉运动电路分析的新范例
- 批准号:
10371764 - 财政年份:2021
- 资助金额:
$ 30.84万 - 项目类别:
Towards elucidation of circuit mechanisms for feeding-related manual dexterity
阐明与喂养相关的手动灵巧性的电路机制
- 批准号:
9982480 - 财政年份:2020
- 资助金额:
$ 30.84万 - 项目类别:
Cellular Mechanisms Underlying Corticocollicular Modulation in the Auditory Syste
听觉系统中皮质小丘调节的细胞机制
- 批准号:
8803418 - 财政年份:2014
- 资助金额:
$ 30.84万 - 项目类别:
Cellular Mechanisms Underlying Corticocollicular Modulation in the Auditory Syste
听觉系统中皮质小丘调节的细胞机制
- 批准号:
8827754 - 财政年份:2014
- 资助金额:
$ 30.84万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Injury Response Mediated Pathogenesis in Renal Ciliopathies
损伤反应介导的肾纤毛病发病机制
- 批准号:
10571152 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别: