Speech-based biomarkers of CNS dysfunction associated with early Alzheimers disea

与早期阿尔茨海默病相关的中枢神经系统功能障碍的基于语音的生物标志物

基本信息

  • 批准号:
    8464336
  • 负责人:
  • 金额:
    $ 15.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): More efficient methods to screen and monitor elderly patients in clinical practice and research are needed, but visits to clinical offices are expensive and many older patient are restricted by mobility or transportation access. The Alzheimer's Disease Cooperative Study (ADCS) is evaluating several technology platforms for remotely monitoring patient status at home. Dr. Mary Sano leads this Home-Based Assessment (HBA) study, which completed patient recruitment several years ago and is now completing the final participant follow-up visits. All participants were comprehensively evaluated in diagnostic interviews by medical professionals at study baseline, and are completing similar evaluations at the end of the study (or when a change in clinical status is suspected). A speech-enabled, computer-automated telephone system using interactive voice response (IVR) technology, developed by Dr. Mundt's research team, is one component of the HBA study. Several of the IVR assessments record speech samples for linguistic analysis, acoustic characteristics of the speech patterns are not being analyzed and resources to do so are not included in the HBA study budget. Recent studies have demonstrated that analysis of vocal acoustic characteristics in speech can provide reliable, physiologically-based biomarkers of CNS functioning associated with major depression. Symptomatic similarities between clinical depression and early Alzheimer's disease have been noted for many years, but the extent of overlap and temporal sequencing of emergent symptoms remains unresolved. Objective, physiologically-based biomarkers of CNS dysfunction may provide new insights for diagnosing and managing Alzheimer's patients. The research proposed is to support the development and validation of potential screening measures that could be used for differential diagnosis in clinical practice, as well as provide a foundation for innovative assessment and management approaches for older persons with multiple chronic conditions. This application proposes to merge non-identifiable clinical outcomes measures and medical diagnoses obtained from HBA investigative sites across the nation with audio files of speech samples recorded by the IVR system developed by CPC. The speech samples will be analyzed by signal processing engineers at MIT's Lincoln Laboratory for acoustic properties reflecting physiologically-based biomarkers associated with CNS disorders such as Alzheimer's, Parkinson's, and depression. The clinical and diagnostic information available through the ADCS database will be used to develop and validate multivariate statistical models to improve diagnostic screening, noninvasive monitoring of disease progression, and/or differential diagnoses between conditions. PUBLIC HEALTH RELEVANCE: Restricted mobility of older patients limits research participation and access to treatment providers, so cognitive decline often goes undetected for longer periods than necessary. Efficient methods to remotely monitoring patients from home using automated telephone systems can improve assessment procedures, reduce access barriers, facilitate multicultural non-English speaking interactions, and enhance patient retention at minimal cost. The ADCS Home-Based Assessment Study has recruited a nationally-representative sample of 214 seniors and is monitoring them longitudinally for 4 years to observe emergence of amnestic MCI and conversion of MCI to mild dementia. An automated telephone system is used to record speech samples from study participants, providing a unique opportunity to identify and develop new, objectively- quantifiable biomarkers of CNS dysfunction reflected in the acoustic characteristic of the speech recordings. Such biomarkers would have the potential for population-based cognitive screening as well as remote longitudinal monitoring of patients being treated for memory impairment disorders.
描述(由申请人提供):在临床实践和研究中需要更有效的方法来筛查和监测老年患者,但前往临床办公室的费用昂贵 许多老年患者受到行动或交通的限制。阿尔茨海默病合作研究 (ADCS) 正在评估多种用于远程监控患者在家状态的技术平台。 Mary Sano 博士领导了这项基于家庭的评估 (HBA) 研究,该研究在几年前完成了患者招募,目前正在完成最终的参与者随访。所有参与者均在研究基线时由医学专业人员进行诊断访谈进行全面评估,并在研究结束时(或怀疑临床状态发生变化时)完成类似的评估。 由 Mundt 博士的研究团队开发的采用交互式语音响应 (IVR) 技术的语音计算机自动化电话系统是 HBA 研究的一个组成部分。一些 IVR 评估会记录用于语言分析的语音样本,但不会分析语音模式的声学特征,并且 HBA 研究预算中不包含用于分析的资源。 最近的研究表明,对语音声学特征的分析可以提供与重度抑郁症相关的中枢神经系统功能的可靠的、基于生理学的生物标志物。多年来人们已经注意到临床抑郁症和早期阿尔茨海默病之间的症状相似性,但重叠的程度和出现的症状的时间顺序仍未解决。客观的、基于生理学的中枢神经系统功能障碍生物标志物可能为诊断和治疗阿尔茨海默病患者提供新的见解。拟议的研究旨在支持开发和验证可用于临床实践中鉴别诊断的潜在筛查措施,例如 并为患有多种慢性病的老年人的创新评估和管理方法奠定基础。 该应用程序建议将从全国 HBA 调查站点获得的不可识别的临床结果测量和医疗诊断与 CPC 开发的 IVR 系统记录的语音样本音频文件合并。麻省理工学院林肯实验室的信号处理工程师将分析语音样本的声学特性,以反映与阿尔茨海默病、帕金森病和抑郁症等中枢神经系统疾病相关的生理生物标志物。通过 ADCS 数据库提供的临床和诊断信息将用于开发和验证多变量统计模型,以改进诊断筛查、疾病进展的无创监测和/或病情之间的鉴别诊断。 公共卫生相关性:老年患者的活动能力受到限制,限制了研究参与和接触治疗提供者的机会,因此认知能力下降往往在比必要的时间更长的时间内未被发现。使用自动电话系统在家中远程监控患者的有效方法可以改进评估程序,减少访问障碍,促进多元文化的非英语互动,并提高患者保留率 以最低的成本。 ADCS 家庭评估研究招募了 214 名老年人作为全国代表性样本,并对他们进行为期 4 年的纵向监测,以观察遗忘性 MCI 的出现以及 MCI 向轻度痴呆的转变。自动电话系统用于记录研究参与者的语音样本,为识别和开发新的、客观可量化的中枢神经系统功能障碍生物标志物提供了独特的机会,这些标志物反映在语音记录的声学特征中。此类生物标志物将具有基于人群的认知筛查以及对正在接受记忆障碍障碍治疗的患者进行远程纵向监测的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C. MUNDT其他文献

JAMES C. MUNDT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C. MUNDT', 18)}}的其他基金

Personalizing Automated Interactivity between Treatment Providers and Clients
个性化治疗提供者和客户之间的自动交互
  • 批准号:
    8000366
  • 财政年份:
    2010
  • 资助金额:
    $ 15.38万
  • 项目类别:
Automated Interactive Text Messaging to Assess Adolescent Depression
自动交互式短信评估青少年抑郁症
  • 批准号:
    8532993
  • 财政年份:
    2010
  • 资助金额:
    $ 15.38万
  • 项目类别:
Automated Interactive Text Messaging to Assess Adolescent Depression
自动交互式短信评估青少年抑郁症
  • 批准号:
    8395426
  • 财政年份:
    2010
  • 资助金额:
    $ 15.38万
  • 项目类别:
Development of a Convenient, Automated, Objective Measure of Depression
开发一种方便、自动化、客观的抑郁症测量方法
  • 批准号:
    7618814
  • 财政年份:
    2003
  • 资助金额:
    $ 15.38万
  • 项目类别:
Development of a Convenient, Automated, Objective Measure of Depression
开发一种方便、自动化、客观的抑郁症测量方法
  • 批准号:
    7821221
  • 财政年份:
    2003
  • 资助金额:
    $ 15.38万
  • 项目类别:
Convenient, automated, objective measure of depression
方便、自动化、客观的抑郁症测量
  • 批准号:
    6691474
  • 财政年份:
    2003
  • 资助金额:
    $ 15.38万
  • 项目类别:
Development of a Convenient, Automated, Objective Measure of Depression
开发一种方便、自动化、客观的抑郁症测量方法
  • 批准号:
    7393504
  • 财政年份:
    2003
  • 资助金额:
    $ 15.38万
  • 项目类别:
PREDICTION OF ALCOHOL TREATMENT DROP-OUT VIA IVR
通过 IVR 预测酒精治疗退出
  • 批准号:
    6213311
  • 财政年份:
    2000
  • 资助金额:
    $ 15.38万
  • 项目类别:
PREDICTION OF ALCOHOL TREATMENT DROP-OUT VIA IVR
通过 IVR 预测酒精治疗退出
  • 批准号:
    6500833
  • 财政年份:
    2000
  • 资助金额:
    $ 15.38万
  • 项目类别:
ALCOHOL RELAPSE PREVENTION VIA PROSPECTIVE IVR FOLLOW-UP
通过前瞻性 IVR 随访预防酗酒
  • 批准号:
    6356371
  • 财政年份:
    1999
  • 资助金额:
    $ 15.38万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了