Metabolomic Analysis as a Tool to Understanding the Use of Novel Therapeutics in
代谢组学分析作为了解新疗法在疾病中的应用的工具
基本信息
- 批准号:8416557
- 负责人:
- 金额:$ 9.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-17 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAwardBackBacteriaBioinformaticsBiologyCause of DeathCellsCellular biologyChronicClinicalCommunitiesComputer SimulationCore FacilityDataDecubitus ulcerDevelopmentDevelopment PlansDiagnosticDisciplineEconomicsEngineeringEnvironmentEquipmentExposure toFaceFailureGoalsGrantGrowthHealedHealth Care CostsHealth care facilityHealthcareHospitalsHumanImmuneImmunologyIn VitroInflammationIronIron Chelating AgentsJournalsK-Series Research Career ProgramsKnowledgeLactoferrinLeadManuscriptsMass Spectrum AnalysisMediatingMediationMedicalMentorsMentorshipMetabolicMetabolic PathwayMethodsMicrobial BiofilmsModelingMolecularMontanaNosocomial InfectionsNuclear Magnetic ResonancePathogenicityPatientsPatternPeer ReviewPhenotypePlant RootsProcessProteinsPseudomonas aeruginosaPublicationsRelative (related person)ResearchResearch PersonnelResearch TrainingResolutionStarvationSystems BiologyTechnical ExpertiseTherapeuticTrainingUnited StatesUnited States Centers for Medicare and Medicaid ServicesUnited States National Institutes of HealthUniversitiesVariantWorkWound Healinganalytical toolbasecareercareer developmentdeprivationexperiencegraduate studenthealinginnovationinsightinterestlecturesmacrophagemetabolomicsnovel diagnosticsnovel therapeuticspathogenprogramsresponseresponsible research conductskillssocialsymposiumtooltrendwound
项目摘要
DESCRIPTION (provided by applicant): My long-term career goal is to establish an independent research career addressing the hypothesis that bacterial biofilms mediate specific pathological effects against host innate immune cells within the wound environment which result in deviations from the normal wound healing process and lead to wound chronicity. My background in innate immunology and medical biofilms provides me with unique expertise enabling me to ask innovative and fundamental questions regarding immune cell-bacteria biofilm interactions. My research training as a graduate student in molecular methods and cell biology has also given me technical skills that will enable me to apply such tools for systems biology analysis of the chronic wound models; at present, I aim to complete my training by gaining expertise in NMR and MS metabolomic analysis, an essential approach to solving systems biology problems such as host- pathogen interactions. My goal with this career development plan is to develop the expertise and master the analytical tools necessary to integrate comprehensive metabolomics analyses into a global systems biology study of immune cell responses to bacterial biofilm exposure. To address my objectives for this career development award, I have assembled a mentorship team with both the expertise to train me in the technical skils of interest and the experience to be effective mentors. Dr. Dratz has nearly 45
years of experience as a NIH supported researcher making him an excellent choice as Senior Mentor of my team. In the course of this award, my objective is to acquire expertise in nuclear magnetic resonance (NMR), mass spectrometry (MS), in silico metabolic modeling, and chemometric analysis working closely with Drs. Copi¿, Bothner, and Carlson all experts in their respective scientific disciplines. In adition to acquiring technical skils necessary to undertake te proposed metabolomics studies, I will seek out professional development. To that end, my career development plan includes participation in educational opportunities such as guest lecturing and the mentorship of a graduate student, participation in training for the Responsible Conduct of Research, and engagement in the larger scientific community through participation in conferences, publication, and the peer-review process of grants and manuscripts. Montana State University (MSU) provides an excellent environment for this training with facilities and equipment that has been acquired within the last few years to develop a state-of-the-art Metabolomics/Systems Biology Research Center, including access to the expertise of core facility managers in NMR, MS, and bioinformatics. In addition, opportunities for intellectual stimulation abound including the Systems Biology Journal Club and cross-disciplinary research. The immediate objective of this career development plan is not only to acquire the technical expertise outlined above, but also to apply that training to the establishment of my own research program. My preliminary work led me to the hypothesis that the interface between innate immune cells and bacterial biofilms result in distinct metabolic profiles that can be manipulated for therapeutic treatment and perhaps can also be used for diagnostics. To assess the validity of this hypothesis, I propose to establish that the biofilm mode of growth of the opportunistic chronic wound pathogen P. aeruginosa results in distinct metabolic patterns and that the biofilms are especially sensitive to iron deprivation by the immune molecule lactoferrin, document that exposure to P. aeruginosa biofilms in vitro results in a metabolic deviation in innate immune cells as part of a phenotypic shift towards inflammation, and establish that introduction of lactoferrin to the in vitro host-pathogen chronic wound model results in metabolic starvation of the pathogen while shifting the innate immune cells toward a resident macrophage phenotype that more efectively resolves inflammation allowing the wound to progress to resolution. The studies proposed here have the potential to uncover mechanisms at the root of deviations from the normal healing process that result in the development of chronic wounds, and will provide molecular knowledge that may be used in the long term to develop novel therapeutic paths by the manipulation of metabolic pathways that control immune cell phenotype.
PUBLIC HEALTH RELEVANCE: Hospital-acquired infections are the sixth leading cause of death in the United States and often result in non-healing wounds. A recent trend regards hospital-acquired infections and pressure ulcers as the result of conditions in (and thus the burden of) healthcare facilities, causing the Centers for Medicare and Medicaid Services to cease paying hospitals for these "preventable complications", resulting in a significant shift in the burden of the cost of healthcare ultimately back to the patient, with substantial economic and social ramifications. The studies proposed here have the potential to uncover the mechanisms at the root of the failure of the normal healing process that results in the development of chronic wounds and may provide novel therapeutic paths by manipulation of metabolic pathways that control the relevant immune cell phenotypes. The proposed metabolomic studies on host-pathogen interactions will identify specific metabolite profiles that may be associated with pathogenicity in the chronic wound and could potentially be used in novel diagnostics; therefore, these studies have direct translational potential that may augment the clinical toolbox needed to face the healthcare burden of chronic wounds.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Cloud Bosworth Ammons其他文献
Mary Cloud Bosworth Ammons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Cloud Bosworth Ammons', 18)}}的其他基金
Metabolic Immunomodulation of Wound-Associated Macrophage Functional Plasticity as a Novel Diagnostic Target in Diabetic Veterans
伤口相关巨噬细胞功能可塑性的代谢免疫调节作为糖尿病退伍军人的新诊断目标
- 批准号:
10533319 - 财政年份:2022
- 资助金额:
$ 9.87万 - 项目类别:
Metabolic Immunomodulation of Wound-Associated Macrophage Functional Plasticity as a Novel Diagnostic Target in Diabetic Veterans
伤口相关巨噬细胞功能可塑性的代谢免疫调节作为糖尿病退伍军人的新诊断目标
- 批准号:
10370267 - 财政年份:2022
- 资助金额:
$ 9.87万 - 项目类别:
Metabolomic Analysis as a Tool to Understanding the Use of Novel Therapeutics in
代谢组学分析作为了解新疗法在疾病中的应用的工具
- 批准号:
8721452 - 财政年份:2012
- 资助金额:
$ 9.87万 - 项目类别:
Metabolomic Analysis as a Tool to Understanding the Use of Novel Therapeutics in a Host-Pathogen Model of the Chronic Wound Environment
代谢组学分析作为了解新型疗法在慢性伤口环境宿主病原体模型中使用的工具
- 批准号:
9468933 - 财政年份:2012
- 资助金额:
$ 9.87万 - 项目类别:
Metabolomic Analysis as a Tool to Understanding the Use of Novel Therapeutics in
代谢组学分析作为了解新疗法在疾病中的应用的工具
- 批准号:
8545882 - 财政年份:2012
- 资助金额:
$ 9.87万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:72104063
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
相似海外基金
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
- 批准号:
10664454 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
- 批准号:
10662674 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Salud de tu Espalda Primary Care to Physical Therapy (STEPPT): Mitigating ethnic disparities in access and engagement in spine pain rehabilitation
Salud de tu Espalda 从初级保健到物理治疗 (STEPPT):减少脊椎疼痛康复获取和参与方面的种族差异
- 批准号:
10753365 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
CNS Effects of Alcohol: Cellular Neurobiology
酒精对中枢神经系统的影响:细胞神经生物学
- 批准号:
10834659 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
Developing and testing a multicomponent breathwork intervention for people with chronic pain
为慢性疼痛患者开发和测试多成分呼吸干预
- 批准号:
10663651 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别: