Methods for the Analysis of Longitudinal Social Network Data
纵向社交网络数据分析方法
基本信息
- 批准号:8377365
- 负责人:
- 金额:$ 10.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptedAdoptionAffectAlcoholismBehaviorBody mass indexCharacteristicsComplexCross-Sectional StudiesDataData AnalysesDevelopmentEgoEpidemicEquationEventGenesGeneticGeographic LocationsHealthHealth behaviorHealth behavior outcomesHeterosexualsHomosexualsIndividualLifeLiteratureMarriageMeasurementMeasuresMental HealthMethodologyMethodsModelingMonitorMyocardial InfarctionNatureNeighborhoodsNodalObesityOutcomeOutcome MeasurePathway AnalysisPatientsPersonsPhysiciansPlayPopulationPositioning AttributePrincipal InvestigatorProbabilityPropertyResearchRoleSeriesShockSmokingSocial NetworkStatistical MethodsStimulusStructureTechniquesTestingTimeTriad Acrylic ResinWorkaffectionbasedata modelingexperienceinnovationinterestlongitudinal analysisphysical conditioningprogramssocialstatisticstraittransmission process
项目摘要
We propose to develop new statistical methods for more precise estimation of the influence of one individual
on another in a network, testing and controlling for selection effects such as homophily observed between
individuals. The work is challenging because network data may contain multiple types of information,
including network topology, nodal covariates, tie characteristics, and temporal change. The central problem
is accounting for the complex correlation structure that arises because each actor in the network may play
the dual role of an ego (rater or responder) and alter (target or stimulus) and thus may appear in the data
multiple times. Furthermore, outcomes might be geographically correlated and correlated over time if
subjects are followed longitudinally. Here, we focus on development of statistical methodology for
longitudinal analysis as this provides the best opportunity for obtaining causal inferences; however, we also
propose innovations involving cross-sectional analysis of networks. We have three specific aims: (1) To
develop methodology for longitudinal analysis of egocentric data. The objective of such analysis is to
determine the causal effect, if any, of an alter adopting a certain health-related behavior or experiencing a
certain outcome (e.g., obesity, heart attack) on an ego adopting or experiencing a similar behavior or
outcome. Because the correlations between characteristics of egos contain important information on how
effects propagate across a population, such models offer the potential to further the scientific understanding
of network effects. (2) To develop methods for longitudinal analysis of observations made on distinct groups
of connected actors (e.g., dyads, triads). For example, suppose that distinct dyads are defined based on
marriage of two individuals; it may be that a property of the tie, such as the quality of the marriage (e.g.,
measured by strength, mutual affection, time spent together per day), is in turn related to the actors' obesity,
the occurrence of health shocks, or the obesity genes in the partners. Although there is a similarity to
egocentric analysis, the dependent variable and possibly some of the independent predictors here are
measured on groups of connected actors rather than the individual actors. (3) To develop methods for
modeling the transition of dyadic data across time as a function of attributes of the actors and of network
characteristics (e.g., clustering, transitivity). Here, the dependent variable is defined for all potential dyads
whether they exist or not. For most substantive analyses, the dependent variable will be an indicator of
whether a tie exists at a given time, in which case we model the transition of the dyad between connected
and unconnected states. However, we will also develop methods for the case where the dependent variable
is more general (e.g., a count such as the number of patients shared between any two physicians in a
network, or some other continuously-valued measure).
我们建议开发新的统计方法,以更精确地估计一个人的影响
在网络中的另一个中,测试和控制选择效应,例如在
个人。这项工作具有挑战性,因为网络数据可能包含多种类型的信息,
包括网络拓扑,节点协变量,TIE特征和时间变化。中心问题
正在考虑出现的复杂相关结构,因为网络中的每个演员都可以玩
自我(评估者或响应者)和Alter(目标或刺激)的双重作用,因此可能出现在数据中
多次。此外,结果可能会随着时间的推移而在地理上相关并相关
纵向遵循受试者。在这里,我们专注于开发统计方法论
纵向分析为此提供了获得因果推论的最佳机会。但是,我们也是如此
提出涉及网络横断面分析的创新。我们有三个具体的目标:(1)
开发用于以自我为中心数据的纵向分析的方法。这种分析的目的是
确定通过某种与健康相关的行为或经历A的因果效应(如果有任何)
对采用或经历类似行为或经历类似行为的自我或
结果。因为自负特征之间的相关性包含有关如何
效果在人群中传播,这种模型为进一步的科学理解提供了潜力
网络效应。 (2)开发用于对不同群体进行观察的纵向分析的方法
连接的演员(例如,二元组,三合会)。例如,假设根据
两个人的婚姻;可能是领带的财产,例如婚姻质量(例如,
通过力量,相互感情,每天度过的时间衡量),反过来又与演员的肥胖有关
健康冲击的发生,或伴侣中的肥胖基因。虽然与
以主为中心的分析,因变量以及这里可能的某些独立预测因子是
以连接的参与者而不是单个参与者的群体进行衡量。 (3)开发用于
建模跨时间的二元数据的过渡,是参与者和网络的属性的函数
特征(例如聚类,传递性)。在这里,为所有潜在二元组定义了因变量
它们是否存在。对于大多数实质性分析,因变量将是
是否在给定时间存在一条领带,在这种情况下,我们建模了连接之间的二元组的过渡
和未连接的国家。但是,我们还将开发因变量的情况
是更一般的(例如,诸如任何两位医生之间共享的患者人数
网络或其他一些连续值的度量)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A. JAMES O'MALLEY其他文献
A. JAMES O'MALLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A. JAMES O'MALLEY', 18)}}的其他基金
Methods for the Analysis of Longitudinal Social Network Data
纵向社交网络数据分析方法
- 批准号:
7393948 - 财政年份:2008
- 资助金额:
$ 10.42万 - 项目类别:
Methods for the Analysis of Longitudinal Social Network Data
纵向社交网络数据分析方法
- 批准号:
8234006 - 财政年份:
- 资助金额:
$ 10.42万 - 项目类别:
Methods for the Analysis of Longitudinal Social Network Data
纵向社交网络数据分析方法
- 批准号:
7797992 - 财政年份:
- 资助金额:
$ 10.42万 - 项目类别:
Methods for the Analysis of Longitudinal Social Network Data
纵向社交网络数据分析方法
- 批准号:
8068201 - 财政年份:
- 资助金额:
$ 10.42万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Strengthening the HIV prevention continuum using pharmacies
利用药房加强艾滋病毒预防连续性
- 批准号:
10619854 - 财政年份:2023
- 资助金额:
$ 10.42万 - 项目类别:
The Economic Viability and Value of Implementing an Inpatient Addiction Consult Model in Public Hospital Systems for Patients with Opioid Use Disorder
在公立医院系统中为阿片类药物使用障碍患者实施住院成瘾咨询模式的经济可行性和价值
- 批准号:
10575853 - 财政年份:2023
- 资助金额:
$ 10.42万 - 项目类别:
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 10.42万 - 项目类别:
Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology
通过集成一步张量变量方法改进功能 MRI 分析
- 批准号:
10708147 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别:
Effect of Hearing Aid Insurance Coverage Requirements for Adults on Utilization
成人助听器保险覆盖范围要求对使用率的影响
- 批准号:
10444684 - 财政年份:2022
- 资助金额:
$ 10.42万 - 项目类别: