Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
基本信息
- 批准号:8338782
- 负责人:
- 金额:$ 72.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-27 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAdoptedAffectCardiacClinicalClipComplexContrast MediaDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic ImagingDoseElectronicsError SourcesEvaluationFiltrationFinancial compensationGoalsImageImaging TechniquesIndividualLeadLesionLungManufacturer NameMethodsModelingMorphologic artifactsMotionMotivationNew AgentsNoiseOutcomePathway interactionsPatientsPhasePhotonsPhysicsPhysiologic pulsePositron-Emission TomographyProceduresProtocols documentationRadiationReportingResolutionSamplingScanningSignal TransductionStagingTechniquesTechnologyTherapy Clinical TrialsTomography, Computed, ScannersTracerTranslationsTubeTumor VolumeVariantX-Ray Computed Tomographyattenuationbasecancer imagingcancer therapydetectorimage reconstructionimprovedinnovationinterestlung imagingnoveloncologyrespiratoryresponsestatisticstooltreatment planningtumoruptake
项目摘要
DESCRIPTION (provided by applicant): Imaging of cancer with combined positron emission tomography/computed tomography (PET/CT) scanners has become a standard component of oncology diagnosis and staging. Furthermore, quantitative PET/CT is a valuable tool for assessment of an individual's response to therapy and for clinical trials of novel cancer therapies. PET/CT imaging of the lung and abdomen, however, is generally affected by patient respiratory motion, which can lead to underestimation of tracer concentration within a region of interest, overestimation of tumor volume, and mis-matched PET and CT images that yield attenuation correction errors, registration errors and tumor mis-localization. The first source of error (attenuation mismatch) can be addressed by performing CT-based attenuation correction using respiratory gated CT images that are phase-matched with the respiratory gated PET scans. The second source of error (motion blurring) can be addressed by methods using respiratory motion estimation and/or gating. The problem is that even with the lowest possible CT technique, the radiation dose is unacceptably high for diagnostic imaging procedures. Our goal is to reduce CT radiation dose dramatically, while improving PET image by reducing errors introduced by respiratory motion. This will enable more accurate PET/CT imaging by enabling compensation of respiratory motion induced artifacts. This is goal is feasible due to the requirements for the CT component of PET/CT imaging, which are different than those for diagnostic CT. The methods proposed here will (1) reduce radiation dose from CT-based attenuation correction methods and (2) provide routine and high quality compensation of respiratory motion artifacts in PET/CT imaging. This will improve the capabilities of quantitative PET/CT imaging in the development of badly needed therapies for cancer, in the evaluation of response to therapy by for an individual patient, and where lesion uptake is noted is a clinical report. The impact of respiratory motion for detection, a primary tool in diagnosis and staging is not clear, but has also not been properly evaluated yet. In addition, the ultra low dose CT methods developed here may be useful for other applications, such as pulmonary CT imaging, dynamic CT with contrast or new tracers, PET/CT guided radiation treatment planning, and PET/CT cardiac imaging.
描述(由申请人提供):使用正电子发射断层扫描/计算机断层扫描(PET/CT)组合扫描仪对癌症进行成像已成为肿瘤学诊断和分期的标准组成部分。此外,定量 PET/CT 是评估个体对治疗的反应和新型癌症疗法的临床试验的宝贵工具。然而,肺部和腹部的 PET/CT 成像通常受到患者呼吸运动的影响,这可能导致低估感兴趣区域内的示踪剂浓度、高估肿瘤体积以及导致衰减的 PET 和 CT 图像不匹配校正错误、配准错误和肿瘤错误定位。第一个误差源(衰减不匹配)可以通过使用与呼吸门控 PET 扫描相位匹配的呼吸门控 CT 图像执行基于 CT 的衰减校正来解决。第二个误差源(运动模糊)可以通过使用呼吸运动估计和/或门控的方法来解决。问题是,即使使用尽可能最低的 CT 技术,诊断成像程序的辐射剂量也高得令人无法接受。我们的目标是大幅减少 CT 辐射剂量,同时通过减少呼吸运动引起的误差来改善 PET 图像。这将通过补偿呼吸运动引起的伪影来实现更准确的 PET/CT 成像。由于 PET/CT 成像对 CT 部分的要求与诊断 CT 的要求不同,因此该目标是可行的。这里提出的方法将(1)减少基于 CT 的衰减校正方法的辐射剂量,(2)为 PET/CT 成像中的呼吸运动伪影提供常规和高质量的补偿。这将提高定量 PET/CT 成像的能力,用于开发急需的癌症疗法、评估个体患者对治疗的反应以及临床报告中记录病变的情况。呼吸运动对检测(诊断和分期的主要工具)的影响尚不清楚,但也尚未得到适当评估。此外,这里开发的超低剂量 CT 方法可能适用于其他应用,例如肺部 CT 成像、对比剂或新示踪剂的动态 CT、PET/CT 引导的放射治疗计划和 PET/CT 心脏成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Clinical and Biological Factors Predicting Lung Transplant Textbook Outcomes (U01)
预测肺移植教科书结果的临床和生物学因素(U01)
- 批准号:
10677558 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别: