Structural and functional analysis of a dynamic ABA signaling complex
动态 ABA 信号复合物的结构和功能分析
基本信息
- 批准号:8346496
- 负责人:
- 金额:$ 36.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:Abscisic AcidAddressAgricultureArchitectureBindingBiochemicalBiological AssayCatalytic DomainCellsCommunicable DiseasesComplexDataDroughtsEnzymesFamilyFoodFresh WaterGenerationsGenetic EngineeringGoalsHarvestHealthHormonesHumanIndividualIon ChannelKRP proteinKnowledgeLigandsMainstreamingMalignant NeoplasmsMalnutritionMediatingMolecularMutateOutcomePathway interactionsPhosphotransferasesPhysiologicalPlant PhysiologyPlantsPoriferaProductionProtein EngineeringProteinsRegulationResearchResolutionResourcesScienceSecond Messenger SystemsSeedsSignal PathwaySignal TransductionSignaling MoleculeSolutionsStressStructureTechnologyTestingTranscriptional ActivationTransgenic PlantsWaterWater StressWater consumptionX-Ray Crystallographybasebiological adaptation to stresscopingfood shortagehuman diseaseimprovedin vivoinsightplant fungiprotein complexprotein phosphatase 2Cprotein protein interactionreceptorreceptor bindingreceptor functionresponsesecond messengertranscription factor
项目摘要
DESCRIPTION (provided by applicant): Most signaling pathways involve labile, dynamic protein complexes that rapidly dissociate and that are therefore notoriously difficult to analyze by high resolution structural studies. In this proposal we will use protein engineering to determine the crystal structure of a dynamic signaling complex of the crucial plant stress hormone abscisic acid (ABA). ABA is an ancient signaling molecule that is found in plants, fungi, and metazoans ranging from sponges to humans. In plants, ABA is an essential hormone and the central regulator to protect plants against abiotic stresses such as drought, cold, and salinity. These stresses are major limiting factors in crop production and therefore main contributors to malnutrition due to food shortage. This is relevant to human health because malnutrition contributes to more than 50% of human disease worldwide, including cancer and infectious diseases. Understanding the detailed mechanism of ABA signaling will be critical to provide a mechanistic basis for genetic engineering of ABA pathways in plants. At the center of ABA signaling are a family of AMPK-related protein kinases that relay the ABA signal by phosphorylating transcription factors, ion channels, and second-messenger-generating enzymes. These kinases are under the control of type 2C protein phosphatases (PP2Cs) and intracellular ABA receptors. In this proposal evidence is presented for the existence of quaternary signaling complexes that contain the receptors, ABA, PP2Cs, and SnRK2s. We will use protein engineering to stabilize these complexes and make them amenable to X-ray crystallography. The structure of these complexes will provide important insight into the function of these complexes and will identify the key interacting residues for all protein-protein and protein-ABA interactions in the context of the complex. We will mutate these residues to determine the function of these interactions in biochemical and cell-based assays as well as in vivo in transgenic plants. The outcome of this project will provide a comprehensive framework for structural understanding of receptor, ABA, PP2C, and SnRK2 interactions in ABA signaling and will thus provide a mechanistic basis for modulating ABA pathways in plants to improve their water use efficiency and food production.
PUBLIC HEALTH RELEVANCE: Malnutrition due to food shortage alone contributes to more than 50% of human disease worldwide, including cancer and infectious diseases. The major limitation for food production is the scarceness of fresh water resources at the global scale where >70% of fresh water is currently used by agriculture. One solution to this critical problem is to increase the water use efficiency of crop plants, but a critical barrier toward this solutionis our poor understanding of molecular mechanisms underlying plant responses to water stress; this project begins to address this critical problem by studying the signaling mechanism of abscisic acid (ABA), which is the central regulator in plants to cope with water stress.
描述(由申请人提供):大多数信号传导途径涉及不稳定的动态蛋白质复合物,这些蛋白质复合物会快速解离,因此很难通过高分辨率结构研究进行分析。在本提案中,我们将利用蛋白质工程来确定重要的植物应激激素脱落酸 (ABA) 的动态信号复合物的晶体结构。 ABA 是一种古老的信号分子,存在于植物、真菌和后生动物(从海绵到人类)中。在植物中,ABA 是一种重要的激素,也是保护植物免受干旱、寒冷和盐度等非生物胁迫的中央调节剂。这些压力是作物生产的主要限制因素,因此也是导致粮食短缺导致营养不良的主要原因。这与人类健康相关,因为全球 50% 以上的人类疾病,包括癌症和传染病,都是由营养不良造成的。了解ABA信号传导的详细机制对于为植物ABA途径的基因工程提供机制基础至关重要。 ABA 信号传导的核心是 AMPK 相关蛋白激酶家族,它们通过磷酸化转录因子、离子通道和第二信使生成酶来传递 ABA 信号。这些激酶受 2C 型蛋白磷酸酶 (PP2C) 和细胞内 ABA 受体的控制。该提案提供了包含受体 ABA、PP2C 和 SnRK2 的四元信号复合物存在的证据。我们将利用蛋白质工程来稳定这些复合物,并使它们适合 X 射线晶体学分析。这些复合物的结构将为了解这些复合物的功能提供重要的见解,并将识别复合物背景下所有蛋白质-蛋白质和蛋白质-ABA 相互作用的关键相互作用残基。我们将突变这些残基,以确定这些相互作用在生化和基于细胞的测定以及转基因植物体内的功能。该项目的成果将为 ABA 信号传导中受体、ABA、PP2C 和 SnRK2 相互作用的结构理解提供一个全面的框架,从而为调节植物中的 ABA 途径以提高其水分利用效率和粮食生产提供机制基础。
公共卫生相关性:全球 50% 以上的人类疾病,包括癌症和传染病,仅由粮食短缺造成的营养不良就造成了。粮食生产的主要限制是全球范围内淡水资源的稀缺,目前超过 70% 的淡水用于农业。解决这一关键问题的一个方法是提高作物的水分利用效率,但实现这一解决方案的一个关键障碍是我们对植物应对水分胁迫的分子机制了解甚少。该项目通过研究脱落酸(ABA)的信号机制来解决这一关键问题,脱落酸是植物应对水分胁迫的中央调节剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karsten Melcher其他文献
Karsten Melcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karsten Melcher', 18)}}的其他基金
Structural and Functional Studies of Rhodopsin and G-Protein Coupled Receptor Kinases
视紫红质和 G 蛋白偶联受体激酶的结构和功能研究
- 批准号:
10012941 - 财政年份:2018
- 资助金额:
$ 36.1万 - 项目类别:
Structural interrogation of allosteric AMPK regulation
变构 AMPK 调节的结构探究
- 批准号:
8584776 - 财政年份:2013
- 资助金额:
$ 36.1万 - 项目类别:
Structural interrogation of allosteric AMPK regulation
变构 AMPK 调节的结构探究
- 批准号:
8831699 - 财政年份:2013
- 资助金额:
$ 36.1万 - 项目类别:
Structural and functional analysis of a dynamic ABA signaling complex
动态 ABA 信号复合物的结构和功能分析
- 批准号:
8500400 - 财政年份:2012
- 资助金额:
$ 36.1万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Promesa: Urban gardening and peer nutritional counseling to improve HIV care outcomes among people with food insecurity in the Dominican Republic
Promesa:城市园艺和同伴营养咨询可改善多米尼加共和国粮食不安全人群的艾滋病毒护理结果
- 批准号:
10698434 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
Understand and mitigating the influence of extreme weather events on HIV outcomes: A global investigation
了解并减轻极端天气事件对艾滋病毒感染结果的影响:一项全球调查
- 批准号:
10762607 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
Addressing Systemic Barriers Impacting Health in CHC Communities
解决影响 CHC 社区健康的系统性障碍
- 批准号:
10781469 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
Understanding predictability of evolutionary trajectories
了解进化轨迹的可预测性
- 批准号:
10712637 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别: