HIERARCHICAL MODELING OF INTERACTIONS IN GENOME-WIDE AND PATHWAY-BASED STUDIES

全基因组和基于通路的研究中相互作用的层次建模

基本信息

  • 批准号:
    7508637
  • 负责人:
  • 金额:
    $ 53.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-16 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Hierarchical Modeling of Interactions in Genome-Wide and Pathway-Based Association Studies: The overarching goal of this grant is to investigate the use of hierarchical modeling in the study of gene-environment and gene-gene interactions in both genome-wide association studies and pathway-based candidate gene studies. We will apply our methods to data available from two large NIH-supported projects: the Colon CFR and Children's Health Study. Data from these association studies often follows a natural hierarchical structure with polymorphisms within gene regions, genes within sub-pathways, and sub-pathways within etiologic networks. By building a statistical model to reflect this natural hierarchy we aim to better account for the dependencies between factors and to better incorporate our knowledge of the underlying etiology. In this proposal, in addition to evaluating the statistical form and structure of such models we also aim to gauge the impact of various types of prior information and intermediate measurements on inference. For genome-wide association studies we will develop analytic approaches for the incorporation of GxE interactions that deal with the multiple testing problem and extend to potentially more efficient 2-phase study designs. These methods will be expanded to test for the interaction of an environmental factor with multiple-SNPs, as well. Specifically with pathway-based studies, we aim to explore the feasibility and performance of mechanistic models (e.g. kinetic models) and hierarchical regression models with model selection for genes and environmental factors within sub-pathways and across networks of pathways. We use prior knowledge in the form of ontologies or expert-based relational databases to help formulate priors for the data analysis. Furthermore, we will investigate various multistage sampling schemes and their interplay with potential genomics data, including whole-exon expression, whole-genome somatic mutations and potential biomarker measures. Finally, we will compare our methods to various data mining techniques to allow genes to act within multiple pathways. Overall, we aim to develop statistical techniques that make it feasible to detect which genes involved in disease and, importantly, in which environmental context they act. By identifying both genetic and environmental factors, we will make progress in understanding the underlying mechanism that leads to disease and potentially identify ways in which to both prevent and treat complex diseases. PUBLIC HEALTH RELEVANCE: Overall, we aim to develop statistical techniques that formally incorporate our biologic knowledge and make it feasible to detect which genes are involved in disease and, importantly, in which environmental context they act. By identifying both genetic and environmental factors, we will make progress in understanding the underlying mechanism that leads to disease and potentially identify ways in which to both prevent and treat complex diseases.
描述(由申请人提供):全基因组和基于通路的关联研究中相互作用的分层建模:这项资助的总体目标是研究分层模型在基因-环境和基因-基因相互作用研究中的使用全基因组关联研究和基于通路的候选基因研究。我们将把我们的方法应用于 NIH 支持的两个大型项目的数据:结肠 CFR 和儿童健康研究。这些关联研究的数据通常遵循自然的层次结构,其中包括基因区域内的多态性、子通路内的基因以及病因网络内的子通路。通过建立一个统计模型来反映这种自然层次结构,我们的目标是更好地解释因素之间的依赖性,并更好地结合我们对潜在病因学的了解。在这个提案中,除了评估此类模型的统计形式和结构之外,我们还旨在衡量各种类型的先验信息和中间测量对推理的影响。对于全基因组关联研究,我们将开发合并 GxE 相互作用的分析方法,处理多重测试问题并扩展到可能更有效的两阶段研究设计。这些方法也将扩展到测试环境因素与多 SNP 的相互作用。具体来说,通过基于通路的研究,我们的目标是探索机械模型(例如动力学模型)和层次回归模型的可行性和性能,以及子通路内和跨通路网络的基因和环境因素的模型选择。我们使用本体或基于专家的关系数据库形式的先验知识来帮助制定数据分析的先验知识。此外,我们将研究各种多阶段采样方案及其与潜在基因组学数据的相互作用,包括全外显子表达、全基因组体细胞突变和潜在的生物标志物测量。最后,我们将我们的方法与各种数据挖掘技术进行比较,以允许基因在多种途径中发挥作用。总体而言,我们的目标是开发统计技术,使检测哪些基因与疾病有关,以及更重要的是,检测它们在何种环境背景下发挥作用成为可能。通过识别遗传和环境因素,我们将在理解导致疾病的潜在机制方面取得进展,并有可能找到预防和治疗复杂疾病的方法。公共卫生相关性:总体而言,我们的目标是开发统计技术,正式融入我们的生物学知识,并使检测哪些基因与疾病有关,以及更重要的是,检测它们在何种环境背景下发挥作用成为可能。通过识别遗传和环境因素,我们将在理解导致疾病的潜在机制方面取得进展,并有可能找到预防和治疗复杂疾病的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David V Conti其他文献

Hierarchical joint analysis of marginal summary statistics-Part II: High-dimensional instrumental analysis of omics data.
边际汇总统计的层次联合分析-第二部分:组学数据的高维仪器分析。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lai Jiang;Jiayi Shen;Burcu F. Darst;C. Haiman;Nicholas Mancuso;David V Conti
  • 通讯作者:
    David V Conti
Excess pancreatic cancer risk due to smoking and modifying effect of quitting smoking: The Multiethnic Cohort Study
吸烟和戒烟改变效应导致胰腺癌风险过高:多种族队列研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Bogumil;D. Stram;Dale L. Preston;S. Pandol;Anna H Wu;R. Mckean;David V Conti;V. Setiawan
  • 通讯作者:
    V. Setiawan
Early Prostate Cancer Deaths Among Men With Higher vs Lower Genetic Risk
遗传风险较高与较低的男性的早期前列腺癌死亡情况
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    A. Plym;Yiwen Zhang;Konrad H. Stopsack;Emilio Ugalde;Tyler M Seibert;David V Conti;C. Haiman;A. Baras;Tanja Stocks;Isabel Drake;K. Penney;Edward L. Giovannucci;A. Kibel;F. Wiklund;L. Mucci
  • 通讯作者:
    L. Mucci
Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes
包括超过 254,000 名东亚和欧洲后裔的精细绘图分析确定了 136 个假定的结直肠癌易感基因
  • DOI:
    10.1038/s41467-024-47399-x
  • 发表时间:
    2024-04-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhishan Chen;Xingyi Guo;Ran Tao;J. Huyghe;P. Law;C. Fernández;J. Ping;G. Jia;J. Long;Chao Li;Quanhu Shen;Yuhan Xie;Maria N Timofeeva;Minta Thomas;Stephanie L. Schmit;V. Díez;M. Devall;Ferran Moratalla;Juan Fern;ez;ez;C. Palles;Kitty Sherwood;Sarah E W Briggs;V. Svinti;Kevin Donnelly;S. Farrington;James Blackmur;P. Vaughan;X. Shu;Yingchang Lu;P. Broderick;James B. Studd;T. Harrison;David V Conti;F. Schumacher;Marilena Melas;Gadi Rennert;M. Obón;V. Martín;Jae;Jeongseon Kim;Sun Ha Jee;K. Jung;Sun;Min;Aesun Shin;Yoon;Dong;I. Oze;W. Wen;K. Matsuo;Kochi Matsuda;C. Tanikawa;Zefang Ren;Yu;W. Jia;John L Hopper;M. Jenkins;A. Win;Rish K Pai;Jane C Figueiredo;Robert W. Haile;S. Gallinger;M. Woods;P. Newcomb;David Duggan;J. Cheadle;R. Kaplan;Rachel Kerr;David Kerr;I. Kirac;J. Böhm;J. Mecklin;Pekka Jousilahti;P. Knekt;L. Aaltonen;H. Rissanen;E. Pukkala;Johan G. Eriksson;Tatiana Cajuso;Ulrika A. Hänninen;Johanna Kondelin;Kimmo Palin;Tomas Tanskanen;L. Renkonen;S. Männistö;D. Albanes;S. Weinstein;Edward Ruiz;Julie R Palmer;D. Buchanan;Elizabeth A Platz;K. Visvanathan;C. Ulrich;Erin M Siegel;S. Brezina;A. Gsur;P. Campbell;J. Chang;M. Hoffmeister;Hermann Brenner;M L Slattery;John D. Potter;Kostas K. Tsilidis;Matthias B. Schulze;Marc J Gunter;N. Murphy;Antoni Castells;S. Castellví;Leticia Moreira;V. Arndt;A. Shcherbina;D. T. Bishop;Graham G. Giles;M. Southey;G. Idos;K. McDonnell;Zomoroda Abu;J. Greenson;Katerina Shulman;F. Lejbkowicz;K. Offit;Yu;R. Steinfelder;T. Keku;B. van Guelpen;T. Hudson;H. Hampel;R. Pearlman;S. I. Berndt;Richard B Hayes;Maria Elena Martinez;Sushma S. Thomas;Paul D. P. Pharoah;S. Larsson;Yun Yen;H. Lenz;Emily White;Li Li;K. Doheny;E. Pugh;T. Shelford;Andrew T. Chan;Marcia Cruz;A. Lindblom;David J Hunter;Amit D Joshi;C. Schafmayer;P. Scacheri;A. Kundaje;Robert E. Schoen;J. Hampe;Z. Stadler;P. Vodicka;L. Vodickova;Veronika Vymetálková;C. Edlund;W. Gauderman;David Shibata;A. Tol;Sanford Markowitz;Andre E Kim;S. Chanock;F. V. van Duijnhoven;Edith J M Feskens;L. Sakoda;M. Gago;Alicja Wolk;Barbara Pardini;L. FitzGerald;Soo;S. Ogino;Stephanie A. Bien;C. Kooperberg;Christopher I. Li;Yi Lin;Ross L Prentice;C. Qu;S. Bézieau;T. Yamaji;N. Sawada;M. Iwasaki;L. Le March;Anna H Wu;C. Qu;C. McNeil;G. Coetzee;C. Hayward;I. Deary;Sarah E. Harris;E. Theodoratou;S. Reid;Marion Walker;L. Ooi;Ken S. Lau;Hongyu Zhao;L. Hsu;Q. Cai;Malcolm G Dunlop;S. Gruber;R. Houlston;V. Moreno;Graham Casey;Ulrike Peters;Ian P M Tomlinson;Wei
  • 通讯作者:
    Wei
A new GWAS and meta-analysis with 1000 Genomes imputation identifies novel risk variants for colorectal cancer
一项新的 GWAS 和 1000 个基因组插补的荟萃分析确定了结直肠癌的新风险变异
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nada Al;N. Whiffin;F. Hosking;C. Palles;P. Law;S. Farrington;Sara E. Dobbins;Rebecca Harris;M. Gorman;Albert Tenesa;Brian F. Meyer;S. Wakil;B. Kinnersley;Harry Campbell;Lynn Martin;Christopher G. Smith;S. Idziaszczyk;E. Barclay;T. S. Maughan;Richard Kaplan;Rachel Kerr;David J. Kerr;Daniel D. Buchannan;A. Win;J. Hopper;M. Jenkins;N. Lindor;Polly A. Newcomb;S. Gallinger;David V Conti;F. Schumacher;Graham Casey;Malcolm G. Dunlop;Ian P. Tomlinson;J. Cheadle;R. Houlston
  • 通讯作者:
    R. Houlston

David V Conti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David V Conti', 18)}}的其他基金

Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
  • 批准号:
    10212708
  • 财政年份:
    2021
  • 资助金额:
    $ 53.84万
  • 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
  • 批准号:
    10629437
  • 财政年份:
    2021
  • 资助金额:
    $ 53.84万
  • 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
  • 批准号:
    10431853
  • 财政年份:
    2021
  • 资助金额:
    $ 53.84万
  • 项目类别:
Multiethnic GWAS and TWAS to Inform Risk Prediction for Prostate Cancer
多种族 GWAS 和 TWAS 为前列腺癌风险预测提供信息
  • 批准号:
    10394795
  • 财政年份:
    2021
  • 资助金额:
    $ 53.84万
  • 项目类别:
Multiethnic GWAS and TWAS to Inform Risk Prediction for Prostate Cancer
多种族 GWAS 和 TWAS 为前列腺癌风险预测提供信息
  • 批准号:
    10613934
  • 财政年份:
    2021
  • 资助金额:
    $ 53.84万
  • 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
  • 批准号:
    9982840
  • 财政年份:
    2018
  • 资助金额:
    $ 53.84万
  • 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
  • 批准号:
    10447158
  • 财政年份:
    2018
  • 资助金额:
    $ 53.84万
  • 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
  • 批准号:
    10249999
  • 财政年份:
    2018
  • 资助金额:
    $ 53.84万
  • 项目类别:
Integration of Omic Data to Estimate Mediation or Latent Structures
整合组学数据来估计中介或潜在结构
  • 批准号:
    10411240
  • 财政年份:
    2016
  • 资助金额:
    $ 53.84万
  • 项目类别:
Integration of Omic Data to Estimate Mediation or Latent Structures
整合组学数据来估计中介或潜在结构
  • 批准号:
    10707453
  • 财政年份:
    2016
  • 资助金额:
    $ 53.84万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 53.84万
  • 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
  • 批准号:
    10662930
  • 财政年份:
    2023
  • 资助金额:
    $ 53.84万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 53.84万
  • 项目类别:
Wildfires and arrhythmias: evaluating associations and intervention strategies
野火和心律失常:评估关联和干预策略
  • 批准号:
    10861971
  • 财政年份:
    2023
  • 资助金额:
    $ 53.84万
  • 项目类别:
The Role of Air Quality and Built Environment in Social Isolation and Cognitive Function among Rural, Racially/Ethnically Diverse Residents at Risk for Alzheimer's Disease
空气质量和建筑环境对有阿尔茨海默病风险的农村、种族/民族多元化居民的社会隔离和认知功能的作用
  • 批准号:
    10740393
  • 财政年份:
    2023
  • 资助金额:
    $ 53.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了