Regulation of ClC-3 in Human Malignant Glioma

ClC-3 在人类恶性胶质瘤中的调控

基本信息

项目摘要

DESCRIPTION (provided by applicant): Malignant glioma, the most common and lethal type of primary brain cancer, affects about 5 in 100,000 people. Despite decades of research and aggressive treatments consisting of surgery, radiotherapy, and chemotherapy, the median survival for this cancer is only about 1 year. To make headway in the clinical management of this devastating neurological disease, research to understand the unique pathophysiology of gliomas may reveal new targets for therapy. Recent research has implicated ion channels in the ability of glioma cells to aggressively migrate and proliferate. More specifically, expression of certain K+ and Cl- channels endows glioma cells with an enhanced ability to concomitantly extrude K+ and Cl-, leading to obligated water release and dynamic cell volume change that are essential for cell invasion and proliferation. One of the ion channels expressed by glioma cells critical to this process is ClC-3, a voltage-gated chloride channel. ClC-3 plays a major role in glioma cell migration and proliferation, but the mechanism by which ClC-3 is activated in glioma cells is not known. Several lines of evidence suggest that ClC-3 may be regulated by Ca2+/calmodulin-dependent protein kinase II, a Ca2+-sensitive kinase. Regulation of ClC-3 by CaMKII is particularly interesting, given that ligands and channels regulating glioma Ca2+ levels also play critical roles in glioma migration and proliferation. Therefore the goal of the current study is to understand if Ca2+ activation of CaMKII leading to ClC-3 phosphorylation will lead to enhanced glioma cell migration and proliferation. This will be accomplished by first determining in Specific Aim 1 if ClC-3 currents in glioma cells are enhanced by CaMKII phosphorylation by using whole-cell patch clamp electrophysiology, immunocytochemistry, and other biochemical assays. Next, in Specific Aim 2, imaging, genetic knockdown, and electrophysiological experiments will be performed to determine if increases in intracellular Ca2+ activate ClC-3 conductance via CaMKII phosphorylation in glioma cells. Finally, Specific Aim 3 is designed to determine if CaMKII-mediated activation of ClC-3 actually plays a role in the migration and proliferation of glioma cells. CaMKII may be a molecular translator, converting intracellular Ca2+ signals into changes in chloride conductance via ClC-3 phosphorylation. Therefore novel therapeutics interfering with ClC-3 activity or CaMKII activation of ClC-3 may lead to better clinical outcomes. Indeed, Chlorotoxin, an inhibitor of chloride currents, is currently entering Phase III trials for the treatment of malignant gliomas. PUBLIC HEALTH RELEVANCE: Despite aggressive treatment, the prognosis for patients suffering from glioblastoma multiforme, a Grade IV primary brain cancer, is very poor. Therefore understanding the unique features of glioblastoma biology will lead to the identification of novel targets for the development of therapeutic agents leading to better clinical outcomes.
描述(由申请人提供):最常见和致命类型的原发性脑癌的恶性神经胶质瘤影响100,000人中约有5人。尽管数十年的研究和包括手术,放疗和化学疗法组成的侵略性疗法,但该癌症的中位生存期仅约1年。为了在这种毁灭性神经系统疾病的临床管理中取得进展,了解神经胶质瘤的独特病理生理学的研究可能揭示了新的治疗靶标。最近的研究暗示了胶质瘤细胞积极迁移和增殖的能力。更具体地说,某些K+和Cl-通道的表达赋予神经胶质瘤细胞具有增强的伴随K+和Cl-的能力,从而导致水释放和动态细胞体积变化,这对于细胞浸润和增殖至关重要。对此过程至关重要的神经胶质瘤细胞表达的离子通道之一是电压门控氯化物通道Clc-3。 CLC-3在神经胶质瘤细胞迁移和增殖中起主要作用,但是在神经胶质瘤细胞中激活CLC-3的机制尚不清楚。几条证据表明,CLC-3可以由Ca2+/钙调蛋白依赖性蛋白激酶II(Ca2+敏感激酶)调节。鉴于调节神经胶质瘤Ca2+水平的配体和通道在神经胶瘤迁移和增殖中也起着关键作用,CAMKII对CLC-3的调节特别有趣。因此,当前研究的目的是了解CA2+ CAMKII是否导致CLC-3磷酸化的CA2+激活是否会导致神经胶质瘤细胞的迁移和增殖增强。如果通过使用全细胞贴片夹电物质学,免疫细胞化学和其他生化测定方法,通过CAMKII磷酸化增强了神经胶质瘤细胞中的CLC-3电流,则首先通过在特定目标1中确定这一点。接下来,将在特定的目标2中进行成像,遗传敲低和电生理实验,以确定细胞内Ca2+中通过CAMKII细胞中的CAMKII磷酸化激活CLC-3电导是否增加。最后,设计特定的目标3旨在确定CAMKII介导的CLC-3的激活是否在神经胶质瘤细胞的迁移和增殖中起作用。 CAMKII可能是分子翻译器,将细胞内Ca2+信号转换为通过CLC-3磷酸化的变化。因此,新的治疗剂会干扰CLC-3活性或CLC-3的CAMKII激活,可能会导致更好的临床结果。实际上,氯毒素是一种氯化物电流的抑制剂,目前正在进入III期试验以治疗恶性神经胶质瘤。 公共卫生相关性:尽管有积极的治疗,但患有多种胶质母细胞瘤的患者(IV级原发性脑癌)的预后非常差。因此,了解胶质母细胞瘤生物学的独特特征将导致鉴定出新的靶标,以开发治疗剂,从而获得更好的临床结局。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Vishnu Anand Cudda...的其他基金

Regulation of seizure timing by circadian rhythms and sleep
通过昼夜节律和睡眠调节癫痫发作时间
  • 批准号:
    10643189
    10643189
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
Regulation of ClC-3 in Human Malignant Glioma
ClC-3 在人类恶性胶质瘤中的调控
  • 批准号:
    8061428
    8061428
  • 财政年份:
    2011
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
  • 批准号:
    32300624
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
  • 批准号:
    10644648
    10644648
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
  • 批准号:
    10645844
    10645844
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
Diabetic Memory in Hematopoietic Stem Cells
造血干细胞的糖尿病记忆
  • 批准号:
    10655742
    10655742
  • 财政年份:
    2023
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别: