Neurotransplantation and Training to Promote Recovery of Chronic SCI Cats
神经移植和训练促进慢性脊髓损伤猫的康复
基本信息
- 批准号:8323867
- 负责人:
- 金额:$ 35.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAffectAnimal ModelAnimalsAxonBackBehavioralBiomechanicsBrainChemicalsChestChondroitin Sulfate ProteoglycanChondroitinasesChronicCicatrixCombined Modality TherapyCommunicationDataDetectionDistalElectric StimulationEnvironmentFOS geneFelis catusFinancial compensationForelimbFosteringFutureGaitGrowthHindlimbHumanHyaluronidaseImplantIndividualInjuryInterneuronsInvestigationJointsLabelLearningLesionLimb structureLinkLocomotionLocomotor RecoveryMeasuresModelingMuscleNatural regenerationNerveNeuronsNeurorehabilitationOperative Surgical ProceduresOrgan TransplantationPainPathway interactionsPatientsPerceptionPeripheral NervesPeripheral nerve injuryPhysical therapyPhysiologicalProceduresProcessRattusRecoveryRecovery of FunctionRehabilitation therapyResearchRiskRoleSensory GangliaSiteSourceSpinalSpinal CordSpinal InjuriesSpinal cord injurySynapsesTechniquesTestingThromboplastinTimeTissuesTrainingTranslationsTransplantationWorkaxon growthaxon regenerationbaseclinical applicationclinically relevantdesignimmunocytochemistryimmunoreactivityimprovedinjuredkinematicslocomotor tasksneurotrophic factornovelpre-clinicalreconstructionregenerativerepairedresearch studyresponsescale upsuccesssynaptogenesistreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Peripheral nerve grafts (PNGs) provide an excellent substratum for axonal regrowth; they can direct regenerating axons towards a specific target and they facilitate electrophysiological experimentation to detect synaptic connectivity between regenerating axons and distal spinal cord neurons. A major impediment to this and all other transplantation approaches after spinal cord injury is the poor growth of axons out of the graft back into the host spinal cord. We have combined Chondroitinase (ChABC, to digest inhibitory chondroitin sulfate proteoglycan molecules) with PN grafting in rats and have anatomical and electrophysiological evidence for functional synapse formation by injured, regenerating axons in both acute and delayed (chronic injury) treatment paradigms. Recently we replicated this rat acute PNG approach in cats where we observed thousands of axons regenerating into the graft, a small percentage of which extended from the graft into the spinal cord distal to the injury, and spinal neurons synaptically activated (determined by c-Fos immunoreactivity) after electrical stimulation of the nerve graft. While we will continue to use rat models for expanding our treatment repertoire, the objective of this study is to focus on application of our treatment strategies to chronically injured cats as a necessary preclinical step before translation into human research. The cat model permits us to investigate issues related to the scaling up of a transplantation model, cats are easily trained to perform locomotor tasks, and recovery of function can be assessed by kinematic and electrophysiological measures. The biomechanics of locomotion are better defined in cats and cats have a hindlimb gait that is close to human than is the rat. The proposed work also will provide information about the ability to effectively treat glial scarring in a large animal, the ability to promote structural and functional regeneration in a large animal with a chronic injury and the potential for rehabilitation training to foster regeneration and functional recovery. There are 2 Specific Aims for this project. 1) We will identify the source and extent of axonal regeneration into a PNG after chronic injury and test whether these axons form functional connections across the lesion. 2) We will test whether the start time of physical rehabilitation affects outgrowth, integration and/or synaptic activity of regenerating axons. A combination of treatment strategies will be used, including transplantation, ChABC treatments and treadmill training to promote activity dependent plasticity. Structural repair will be assessed by anatomical tract tracing and immunocytochemical labeling; forelimb-hindlimb coordination will be assessed by kinematic and electromyogram (EMG) analysis; functional reconnection will be measured during electrophysiological stimulation of the graft and by c-fos expression in synaptically activated neurons. Surgical intervention after SCI usually is not an option until the patient is stabilized, thus the majority of individuals with SCI likely will be chronically injured before a treatment strategy for repair is initiated. Our work with chronically injured rats demonstrates the ability to promote long distance regeneration with formation of functionally active synapses distal to an injury. The proposed study will take advantage of the treatment approaches that have been (and are being) developed with chronically injured rats, but will apply them to a large animal model of SCI. This preclinical advancement is a crucial step towards translation to a clinical application. We propose a unique approach to address a very important aspect of SCI, i.e. chronic injury in a large animal model. Locomotor training of injured cats has been carried out by numerous labs, but not in a situation where axon regeneration is facilitated. This will be a novel application of neuroregeneration and neurorehabilitation techniques to increase our understanding of the potential for repair after SCI.
描述(由申请人提供):周围神经移植物(PNG)为轴突再生提供了极好的基质;它们可以将再生轴突导向特定目标,并促进电生理学实验以检测再生轴突和远端脊髓神经元之间的突触连接。脊髓损伤后这种移植方法和所有其他移植方法的一个主要障碍是从移植物返回宿主脊髓的轴突生长不良。我们将软骨素酶(ChABC,用于消化抑制性硫酸软骨素蛋白聚糖分子)与大鼠 PN 移植相结合,并获得了急性和延迟(慢性损伤)治疗范例中受损、再生轴突形成功能性突触的解剖学和电生理学证据。最近,我们在猫身上复制了这种大鼠急性 PNG 方法,观察到数千个轴突再生到移植物中,其中一小部分从移植物延伸到损伤远端的脊髓,并且脊髓神经元突触激活(由 c-Fos 确定)神经移植物电刺激后的免疫反应性)。虽然我们将继续使用大鼠模型来扩展我们的治疗方案,但本研究的目的是重点将我们的治疗策略应用于慢性受伤的猫,作为转化为人类研究之前的必要临床前步骤。猫模型使我们能够研究与移植模型放大相关的问题,猫很容易被训练来执行运动任务,并且可以通过运动学和电生理学测量来评估功能的恢复。猫的运动生物力学得到了更好的定义,并且猫的后肢步态比老鼠更接近人类。拟议的工作还将提供有关有效治疗大型动物神经胶质疤痕的能力、促进慢性损伤大型动物结构和功能再生的能力以及促进再生和功能恢复的康复训练潜力的信息。该项目有 2 个具体目标。 1)我们将确定慢性损伤后 PNG 中轴突再生的来源和程度,并测试这些轴突是否在病变中形成功能连接。 2)我们将测试身体康复的开始时间是否影响再生轴突的生长、整合和/或突触活动。将结合使用治疗策略,包括移植、ChABC 治疗和跑步机训练,以促进活动依赖性可塑性。将通过解剖道追踪和免疫细胞化学标记来评估结构修复;将通过运动学和肌电图(EMG)分析来评估前肢-后肢协调性;功能重新连接将在移植物的电生理刺激过程中以及通过突触激活的神经元中的 c-fos 表达来测量。在患者病情稳定之前,SCI 后通常不能选择手术干预,因此大多数 SCI 患者在开始修复治疗策略之前可能会受到慢性损伤。我们对慢性损伤大鼠的研究表明,通过在损伤远端形成功能活跃的突触来促进长距离再生的能力。拟议的研究将利用已经(和正在)针对慢性损伤大鼠开发的治疗方法,并将其应用于大型 SCI 动物模型。这一临床前进展是转化为临床应用的关键一步。我们提出了一种独特的方法来解决 SCI 的一个非常重要的方面,即大型动物模型中的慢性损伤。许多实验室已经对受伤的猫进行了运动训练,但没有在促进轴突再生的情况下进行。这将是神经再生和神经康复技术的一个新应用,以增加我们对 SCI 后修复潜力的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D. Houle其他文献
Transplantation of fetal spinal cord tissue into acute and chronic hemisection and contusion lesions of the adult rat spinal cord.
将胎儿脊髓组织移植到成年大鼠脊髓的急性和慢性半切和挫伤病变中。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
P. Reier;John D. Houle;L. Jakeman;David Winialski;A. Tessler - 通讯作者:
A. Tessler
John D. Houle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John D. Houle', 18)}}的其他基金
Neurotransplantation and Training to Promote Recovery of Chronic SCI Cats
神经移植和训练促进慢性脊髓损伤猫的康复
- 批准号:
8508096 - 财政年份:2011
- 资助金额:
$ 35.44万 - 项目类别:
Neurotransplantation and Training to Promote Recovery of Chronic SCI Cats
神经移植和训练促进慢性脊髓损伤猫的康复
- 批准号:
8708996 - 财政年份:2011
- 资助金额:
$ 35.44万 - 项目类别:
Neurotransplantation and Training to Promote Recovery of Chronic SCI Cats
神经移植和训练促进慢性脊髓损伤猫的康复
- 批准号:
8258144 - 财政年份:2011
- 资助金额:
$ 35.44万 - 项目类别:
Neurotransplantation and Training to Promote Recovery of Chronic SCI Cats
神经移植和训练促进慢性脊髓损伤猫的康复
- 批准号:
8909214 - 财政年份:2011
- 资助金额:
$ 35.44万 - 项目类别:
Exercise, Intraspinal Transplants and Spinal Cord Plasticity
运动、椎管内移植和脊髓可塑性
- 批准号:
8534982 - 财政年份:2007
- 资助金额:
$ 35.44万 - 项目类别:
Exercise, Intraspinal Transplants and Spinal Cord Plasticity
运动、椎管内移植和脊髓可塑性
- 批准号:
8652510 - 财政年份:2007
- 资助金额:
$ 35.44万 - 项目类别:
Spinal cord injury, plasticity and transplant mediated repair
脊髓损伤、可塑性和移植介导的修复
- 批准号:
8828797 - 财政年份:2007
- 资助金额:
$ 35.44万 - 项目类别:
Spinal cord injury, plasticity and transplant mediated repair
脊髓损伤、可塑性和移植介导的修复
- 批准号:
8652507 - 财政年份:2007
- 资助金额:
$ 35.44万 - 项目类别:
Spinal Cord Injury, Plasticity and Transplant Mediated Repair
脊髓损伤、可塑性和移植介导的修复
- 批准号:
7584181 - 财政年份:2007
- 资助金额:
$ 35.44万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 35.44万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 35.44万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别: