Mechanisms of ROS Balance and Cardiac Energy Metabolism in Diabetes Mellitus
糖尿病中ROS平衡与心脏能量代谢的机制
基本信息
- 批准号:8204907
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2013-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcetyl Coenzyme AAddressAdenine NucleotidesAdverse effectsAffectAnimalsArrhythmiaBehaviorBiochemical PathwayCalciumCarbohydratesCardiacCardiac MyocytesCardiovascular systemCellsComplexComputer SimulationContractsCouplingDependenceDevicesDiabetes MellitusDiffuseDiseaseElectron TransportEnergy MetabolismEnergy Metabolism PathwayEnvironmentEnzymesEquilibriumGlucoseGlutathioneGlycolysisGrowthHeartHyperglycemiaIndividualInsulinInterventionLeadMechanicsMembrane PotentialsMetabolicMetabolic ControlMetabolic PathwayMetabolismMetforminMethodsMitochondriaModelingMonitorMuscleMyocardiumNADHNon-Insulin-Dependent Diabetes MellitusNutritionalOutputOxidation-ReductionPathway interactionsPentosephosphate PathwayPharmaceutical PreparationsPhosphorylationPhysiologicalPhysiologyPopulationPreventionProcessProductionPublic HealthRattusReactionReactive Oxygen SpeciesReduced GlutathioneRegulationRespiratory ChainSignal TransductionSimulateStructureSystemTestingTherapeuticTherapeutic InterventionTissuesTitrationsTransducersWorkbasedesigndiabeticdiabetic ratfatty acid metabolismfatty acid oxidationgene therapyin vivoinhibitor/antagonistinnovationmitochondrial membraneoxidationpreventprospectivepyruvate dehydrogenaserespiratorytool
项目摘要
Project Summary
In this proposal we aim to study the integrated metabolism of reactive oxygen species (ROS) and
energetics, experimentally and by computational modeling, applying two recently introduced concepts: "Redox-
optimized ROS balance" (R-OR balance), and "control by diffuse loops". In order to analyze in an integrated
manner the mechanisms of control and regulation of energy and ROS balance in an important disease for
public health, we will investigate working cardiac muscle in a type 2 diabetes mellitus (T2DM) rat model,
focusing on the effects of insulin and metformin upon energy and ROS pathways.
In the diabetic cardiac muscle, we seek to understand the interdependence of energy and ROS fluxes and
their relation to the redox environment, We will focus on the effects of insulin and metformin (a widely-used
anti-hyperglycemic drug) on metabolic control. These studies will apply state of the art quantitative tools of
metabolic control analysis based on the inhibitor titration method, and on the analysis of transients after
perturbation of the steady state regime. We plan to monitor metabolic variables and ROS in rat cardiac
trabeculae loaded with fluorescent indicators, under working conditions in a force transducer device. The
experimental results will be used to constrain and fine-tune a computational model of the cardiac myocyte that
integrates mechanical, electrophysiological and metabolic activities (ECME model). So far, the ECME model
has been able to successfully simulate the behavior of i) oscillations in mitochondrial membrane potential,
NADH, glutathione, and ROS, ii) the dynamics of mitochondrial NADH, calcium, and ADP during changes in
supply and demand in the heart, and iii) the dynamics of the sarcolemmal membrane potential during
mitochondrial oscillations in whole hearts undergoing arrhythmias.
The model will be extended to incorporate pathways upstream Acetyl CoA, namely glycolysis, pentose
phosphate pathways and beta-oxidation. A more detailed mathematical description of the electron-transport
complexes of the respiratory chain, and of the ROS scavenging pathways, will enable accounting for the
mechanisms of ROS balance. The computational model will be subjected to metabolic control in an effort to
identify the steps that participate in the control and regulation of the network of energy and ROS pathways.
We are convinced that in order to perform a rational intervention in the treatment and prevention of a
disease regarding the cardiovascular system, a deeper understanding of the integrated behavior of metabolic
networks is needed. This justifies our attempt to build a computational model that will lead to a quantitative
understanding of the dysfunctional aspects of heart physiology, and point out potential targets that could be
used for therapeutic interventions, either pharmacological, nutritional or by gene therapy.
项目概要
在本提案中,我们的目标是研究活性氧(ROS)和的综合代谢
能量学,通过实验和计算建模,应用两个最近引入的概念:“氧化还原-
优化的 ROS 平衡”(R-OR 平衡)和“通过扩散环控制”。为了在集成中进行分析
探讨重要疾病中能量和ROS平衡的控制和调节机制
公共卫生方面,我们将研究 2 型糖尿病 (T2DM) 大鼠模型中的工作心肌,
重点关注胰岛素和二甲双胍对能量和 ROS 途径的影响。
在糖尿病心肌中,我们试图了解能量和 ROS 通量的相互依赖性,以及
它们与氧化还原环境的关系,我们将重点关注胰岛素和二甲双胍(一种广泛使用的
抗高血糖药物)对代谢控制的影响。这些研究将应用最先进的定量工具
基于抑制剂滴定法的代谢控制分析以及之后的瞬态分析
稳态机制的扰动。我们计划监测大鼠心脏的代谢变量和 ROS
在力传感器装置的工作条件下装载有荧光指示剂的小梁。这
实验结果将用于约束和微调心肌细胞的计算模型
整合机械、电生理和代谢活动(ECME 模型)。到目前为止,ECME模型
已经能够成功模拟 i) 线粒体膜电位振荡的行为,
NADH、谷胱甘肽和 ROS,ii) 线粒体 NADH、钙和 ADP 变化过程中的动态
心脏的供给和需求,以及 iii) 肌膜膜电位的动态变化
发生心律失常的整个心脏中的线粒体振荡。
该模型将扩展到纳入乙酰辅酶A上游途径,即糖酵解、戊糖
磷酸途径和β-氧化。电子传输的更详细的数学描述
呼吸链和 ROS 清除途径的复合体将能够解释
ROS 平衡机制。计算模型将受到代谢控制,以努力
确定参与能量和 ROS 通路网络控制和调节的步骤。
我们坚信,为了对疾病的治疗和预防进行合理的干预,
有关心血管系统的疾病,更深入地了解代谢的综合行为
需要网络。这证明了我们尝试建立一个计算模型的合理性,该模型将导致定量分析
了解心脏生理学的功能失调方面,并指出可能的潜在目标
用于药物、营养或基因治疗的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sonia del Carmen Cortassa其他文献
Sonia del Carmen Cortassa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sonia del Carmen Cortassa', 18)}}的其他基金
Mechanisms of ROS Balance and Cardiac Energy Metabolism in Diabetes Mellitus
糖尿病中ROS平衡与心脏能量代谢的机制
- 批准号:
8029925 - 财政年份:2010
- 资助金额:
$ 20.5万 - 项目类别:
相似国自然基金
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
过氧化物酶体β-氧化通过乙酰辅酶A调控过氧化物酶体稳态的分子机制研究
- 批准号:32370738
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙酰辅酶A合成酶2(ACSS2)调控内侧前额叶皮层神经元的活性在抑郁发病中的作用及机制研究
- 批准号:82301698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙酰辅酶A合成酶点突变在青蒿素类药物抗性中的作用及机制研究
- 批准号:32370543
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
牵张力介导的线粒体钙调控乙酰辅酶A影响牙周炎PDLSCs成骨分化的作用机制研究
- 批准号:82301121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10371874 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10592265 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Mechanisms of ROS Balance and Cardiac Energy Metabolism in Diabetes Mellitus
糖尿病中ROS平衡与心脏能量代谢的机制
- 批准号:
8029925 - 财政年份:2010
- 资助金额:
$ 20.5万 - 项目类别:
Integrated Modeling of Cardiac Metabolism and Transport
心脏代谢和运输的综合建模
- 批准号:
7530169 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别:
Integrated Modeling of Cardiac Metabolism and Transport
心脏代谢和运输的综合建模
- 批准号:
7878769 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别: