Statistical Informatics for Cancer Research
癌症研究统计信息学
基本信息
- 批准号:8323844
- 负责人:
- 金额:$ 61.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-10 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAchievementAddressAdvisory CommitteesAmericanAmerican Cancer SocietyAreaBehavioralBioinformaticsBiological MarkersBiological MarkersBiologyBiomedical ResearchBiostatistical MethodsBiotechnologyBostonCase-Control StudiesCause of DeathCessation of lifeChildhood LeukemiaClinical TrialsCommunitiesComplexComputational BiologyComputing MethodologiesCoupledDataData SetDatabasesDetectionDevelopmentDiagnosisDiseaseDisease ClusteringsDisease modelEmerging TechnologiesEnrollmentEnsureEpidemiologic MethodsEpidemiologic StudiesEtiologyExplosionFaceFoundationsFundingGenderGenerationsGenesGeneticGenetic PolymorphismGenomicsGeographic Information SystemsGoalsGovernment AgenciesHealthHealth InsuranceHealthcareHeart DiseasesHospitalsIncidenceIndividualInformaticsInformation TechnologyLife ExpectancyLinkMalignant NeoplasmsMeasuresMedical SurveillanceMethodsModelingMolecular BiologyMonitorNational Cancer InstituteNatureObservational StudyOutcomes ResearchPatientsPatternPharmacologic SubstancePoliciesPopulation SurveillancePredispositionPremature MortalityPrevention strategyProportional Hazards ModelsProteomicsPublicationsQuality of lifeRaceRecording of previous eventsRecordsRegistriesRelianceReportingResearchResearch DesignResearch PersonnelResearch Project GrantsRiskRisk AssessmentRisk FactorsScientific Advances and AccomplishmentsScreening for cancerScreening procedureSeriesSoftware DesignSourceStatistical ComputingStatistical MethodsStudy SubjectSurvival AnalysisTechniquesThinkingTimeanticancer researchbasecancer therapydata miningdesigndisease natural historydisorder riskdissemination researcheffective therapyfallshealth disparityindexinginnovationmalignant breast neoplasmmarkov modelmortalityneoplasm registrypopulation basedprofessorprogramsresponsesocialsocioeconomicssoundsurveillance datauser friendly software
项目摘要
DESCRIPTION (provided by applicant): We propose a Program Project, Statistical Informatics in Cancer Research, to tackle a series of problems motivated by the analysis of high dimensional data arising in population-based studies of cancer. This Program Project comprises three research projects and two cores. Project 1 focuses on spatio-temporal modeling of disease count data collected for administrative areas. The specific aims are motivated by problems encountered in epidemiological studies designed to monitor and assess health disparities. Our proposed methods address issues associated with administrative boundaries changing over time, sparse disease counts, spatial confounding, and heavy computational burdens for large data sets. Methods will be applied to data on U.S. breast cancer incidence from three state cancer registries, Boston-area premature mortality, and NCI SEER data. Project 2 is also motivated by spatially-indexed data related to cancer incidence and mortality, but the emphasis is on population surveillance and spatial cluster detection. Three of the specific aims of Project 2 are motivated by the analysis of NCI SEER data and one from a case/control study designed to assess spatial clustering in childhood leukemia. This dataset also includes individual level data on several genetic biomarkers of susceptibility. One sub-aim of this project assesses gene-space interaction by studying whether disease clustering patterns differ according to genetic polymorphisms. Project 3 focuses on methods for the analysis of very high dimensional genomic and proteomic biomarkers. Extensions to spatially indexed genomic data are also considered in Project 3. All of the aims of the three projects are closely integrated with the motivating real world cancer studies in which the investigators are involved. The three projects link thematically through a focus on population-based, observational studies in cancer, as well as technically through the consideration of high-dimensional correlated data (arising from different sources) that require advanced statistical and computing methods. Several specific techniques (e.g. spatio-temporal modeling, penalized likelihoods, False Discovery Rates, hidden Markov models) are shared between two and in some cases all three projects. The two cores consist of an Administrative Core and a Statistical Computing Core. The Administrative Core will coordinate the overall scientific direction and programmatic activities of Program, which will include short courses, a visitor program, dissemination of research results, and an external advisory committee. A Statistical Computing Core will ensure the development and dissemination of open access, good quality, user friendly software designed to implement the statistical methods developed in the Research Projects, which is the final Specific Aim of each of the three projects. The Program Director and Co-Director, Professors Louise Ryan and Xihong Lin, respectively, are internationally known biostatisticians with strong track records of academic administration.
描述(由申请人提供):我们提出了一个名为“癌症研究中的统计信息学”的计划项目,旨在解决基于人群的癌症研究中出现的高维数据分析引发的一系列问题。该计划项目包括三个研究项目和两个核心项目。项目 1 重点关注为行政区域收集的疾病计数数据的时空建模。这些具体目标是出于旨在监测和评估健康差异的流行病学研究中遇到的问题而制定的。我们提出的方法解决了与随时间变化的行政边界、稀疏疾病计数、空间混杂以及大数据集的繁重计算负担相关的问题。方法将应用于来自三个州癌症登记处的美国乳腺癌发病率数据、波士顿地区过早死亡率和 NCI SEER 数据。项目 2 的动机也是与癌症发病率和死亡率相关的空间索引数据,但重点是人口监测和空间聚类检测。项目 2 的三个具体目标是由 NCI SEER 数据分析推动的,其中一个目标来自旨在评估儿童白血病空间聚类的病例/对照研究。该数据集还包括几种易感性遗传生物标志物的个体水平数据。该项目的一个子目标是通过研究疾病聚类模式是否根据遗传多态性而有所不同,从而评估基因空间相互作用。项目 3 侧重于分析极高维基因组和蛋白质组生物标志物的方法。项目 3 还考虑了空间索引基因组数据的扩展。这三个项目的所有目标都与研究人员参与的现实世界癌症研究紧密结合。这三个项目通过关注基于人群的癌症观察性研究在主题上相互联系,在技术上通过考虑需要先进统计和计算方法的高维相关数据(来自不同来源)。几个特定技术(例如时空建模、惩罚似然、错误发现率、隐马尔可夫模型)在两个项目之间共享,在某些情况下是所有三个项目之间共享。这两个核心由管理核心和统计计算核心组成。行政核心将协调该计划的总体科学方向和计划活动,其中包括短期课程、访客计划、研究成果传播和外部咨询委员会。统计计算核心将确保开发和传播开放获取、优质、用户友好的软件,旨在实施研究项目中开发的统计方法,这是三个项目中每个项目的最终具体目标。项目主任和联合主任 Louise Ryan 教授和林熙红教授分别是国际知名的生物统计学家,拥有良好的学术管理记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIHONG LIN其他文献
XIHONG LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIHONG LIN', 18)}}的其他基金
Statistical Methods for Integrative Analysis of Large-Scale Multi-Ethnic Whole Genome Sequencing Studies and Biobanks of Common Diseases
大规模多民族全基因组测序研究和常见疾病生物样本库综合分析的统计方法
- 批准号:
10622567 - 财政年份:2022
- 资助金额:
$ 61.46万 - 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases- Extended 2021-2022.
为常见人类疾病提供基于全基因组序列的基因发现 - 延期 2021-2022 年。
- 批准号:
10355760 - 财政年份:2021
- 资助金额:
$ 61.46万 - 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
- 批准号:
10085285 - 财政年份:2020
- 资助金额:
$ 61.46万 - 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
- 批准号:
10168752 - 财政年份:2020
- 资助金额:
$ 61.46万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9120850 - 财政年份:2015
- 资助金额:
$ 61.46万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
10676866 - 财政年份:2015
- 资助金额:
$ 61.46万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9321418 - 财政年份:2015
- 资助金额:
$ 61.46万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9980301 - 财政年份:2015
- 资助金额:
$ 61.46万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
8955524 - 财政年份:2015
- 资助金额:
$ 61.46万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
An Integrated Data Approach to Exploring Racial Differences in Reading Intervention Effectiveness
探索阅读干预效果中种族差异的综合数据方法
- 批准号:
10567796 - 财政年份:2023
- 资助金额:
$ 61.46万 - 项目类别:
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
- 批准号:
10569397 - 财政年份:2023
- 资助金额:
$ 61.46万 - 项目类别:
Clinical and Molecular based prognostic factors for Venous Thromboembolism (VTE) in Children with Sickle Cell Disease
镰状细胞病儿童静脉血栓栓塞 (VTE) 的临床和分子预后因素
- 批准号:
10739524 - 财政年份:2023
- 资助金额:
$ 61.46万 - 项目类别: