Pin1 prolyl isomerase regulates endothelial nitric oxide synthase
Pin1 脯氨酰异构酶调节内皮一氧化氮合酶
基本信息
- 批准号:8287856
- 负责人:
- 金额:$ 36.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdhesionsAffectAgonistAlzheimer&aposs DiseaseAmino Acid SequenceAnimal Disease ModelsAnimal ModelAnimalsApoptosisArginineArterial Fatty StreakAtherosclerosisBindingBlood PlateletsBlood PressureBlood VesselsCardiovascular DiseasesCardiovascular systemCattleClinical TrialsComplexDataDevelopmentDiabetes MellitusDiseaseEndothelial CellsEndotheliumEnzymesExposure toExtravasationFunctional disorderGoalsGraft RejectionHealthHomeostasisHypertensionIn VitroInflammationInflammatoryInvestigationKnowledgeLeadLeukocytesMaintenanceMalignant NeoplasmsMethodsMitogen Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Nitric OxideOrgan TransplantationPathogenesisPeptidylprolyl IsomerasePhosphorylationPhosphorylation SitePhysiologyPlatelet aggregationPost-Translational RegulationProcessProductionProlineProline-Directed Protein KinasesProtein ConformationProteinsPublishingRegulationResearch ProposalsRoleScientistSerineSiteStructureTestingThreonineTimeVascular DiseasesVasodilationangiogenesisatherogenesisblood pressure regulationcytokinedisease phenotypehuman NOS3 proteinin vivoinhibitor/antagonistinterestmembernoveloxidationpreventprotein functionprotein protein interactionvascular smooth muscle cell proliferation
项目摘要
DESCRIPTION (provided by applicant): Endothelium-derived nitric oxide (NO) regulates many important aspects of cardiovascular homeostasis and alterations in vascular NO production of as little as two-fold can have major consequences in both normal vascular physiology and vascular pathophysiology. NO has a crucial role in regulation of the state of vasodilatation of blood vessels and hence in regulation of blood pressure. NO released from the endothelium also modulates other processes as well including platelet aggregation, platelet and leukocyte adhesion to the endothelium, vascular smooth muscle cell proliferation, endothelial cell apoptosis, angiogenesis, and vascular leakage involved in acute inflammation. Because of the key role of NO in each of these processes, abnormalities in vascular NO production are thought to contribute to the pathogenesis of certain vascular disorders such as those of atherosclerosis, diabetes, and hypertension. NO is synthesized in endothelial cells by oxidation of arginine catalyzed by the enzyme, endothelial nitric oxide synthase (eNOS). Obtaining a detailed understanding of the structure, function, and regulation of eNOS enzyme is thus clearly a worthy goal of scientific investigation. eNOS is regulated post-translationally by two primary mechanisms: protein-protein interactions and phosphorylation. Nothing is yet known about how these two different eNOS regulation processes are interrelated. What has been known for some time, however, is that there exists in eNOS an inhibitory phosphorylation site at serine 116 (S116). This site is phosphorylated in endothelial cells under basal conditions and after exposure to pro-inflammatory cytokines. Our preliminary data give rise to the hypothesis that proline-directed phosphorylation of eNOS at S116 promotes binding of the Pin1 prolyl isomerase and Pin1-induced conformational changes that suppress eNOS activity. Preliminary data also show that this process may make an important contribution to the disease of atherosclerosis. We therefore propose to test these hypotheses by a variety of different methods using purified proteins, cultured endothelial cells, intact blood vessel segments, and whole animals including animal disease models. These studies will provide a more complete understanding than currently exists of regulation of eNOS in endothelial cells, a topic of great interest to both basic scientists and clinicians.
PUBLIC HEALTH RELEVANCE: Cardiovascular health critically depends on the maintenance of proper levels of nitric oxide (NO) in blood vessels to control blood pressure and to prevent the
development of atherosclerosis. NO is produced in blood vessels by the endothelial nitric oxide synthase (eNOS). The primary objective of this research proposal is to obtain a more complete understanding of how eNOS is regulated by a combination of the two processes of phosphorylation and protein-protein interactions.
描述(由申请人提供):内皮源性一氧化氮 (NO) 调节心血管稳态的许多重要方面,血管一氧化氮生成的改变只要两倍即可对正常血管生理学和血管病理生理学产生重大影响。一氧化氮在血管舒张状态的调节以及血压的调节中起着至关重要的作用。内皮释放的一氧化氮还调节其他过程,包括血小板聚集、血小板和白细胞与内皮的粘附、血管平滑肌细胞增殖、内皮细胞凋亡、血管生成和急性炎症中涉及的血管渗漏。由于一氧化氮在这些过程中的每一个过程中都发挥着关键作用,因此血管一氧化氮生成异常被认为是导致某些血管疾病(例如动脉粥样硬化、糖尿病和高血压)的发病机制的原因之一。 NO 在内皮细胞中通过内皮一氧化氮合酶 (eNOS) 催化精氨酸氧化而合成。因此,详细了解 eNOS 酶的结构、功能和调节显然是一个值得科学研究的目标。 eNOS 通过两种主要机制进行翻译后调节:蛋白质-蛋白质相互作用和磷酸化。目前尚不清楚这两种不同的 eNOS 调节过程如何相互关联。然而,一段时间以来人们已经知道,eNOS 中的丝氨酸 116 (S116) 存在一个抑制性磷酸化位点。在基础条件下和暴露于促炎细胞因子后,该位点在内皮细胞中被磷酸化。我们的初步数据提出了这样的假设:eNOS 在 S116 处的脯氨酸定向磷酸化促进 Pin1 脯氨酰异构酶的结合以及 Pin1 诱导的构象变化,从而抑制 eNOS 活性。初步数据还表明,这一过程可能对动脉粥样硬化疾病做出重要贡献。因此,我们建议使用纯化的蛋白质、培养的内皮细胞、完整的血管片段和包括动物疾病模型在内的整个动物,通过各种不同的方法来检验这些假设。这些研究将比目前对内皮细胞中 eNOS 的调节提供更全面的了解,这是基础科学家和临床医生都非常感兴趣的话题。
公共卫生相关性:心血管健康主要取决于维持血管中适当的一氧化氮 (NO) 水平,以控制血压并预防心血管疾病
动脉粥样硬化的发展。 NO 由血管中的内皮一氧化氮合酶 (eNOS) 产生。本研究计划的主要目的是更全面地了解 eNOS 如何通过磷酸化和蛋白质-蛋白质相互作用这两个过程的组合进行调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD C VENEMA其他文献
RICHARD C VENEMA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD C VENEMA', 18)}}的其他基金
Pin1 prolyl isomerase regulates endothelial nitric oxide synthase
Pin1 脯氨酰异构酶调节内皮一氧化氮合酶
- 批准号:
8823817 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
Pin1 prolyl isomerase regulates endothelial nitric oxide synthase
Pin1 脯氨酰异构酶调节内皮一氧化氮合酶
- 批准号:
8445223 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
Pin1 prolyl isomerase regulates endothelial nitric oxide synthase
Pin1 脯氨酰异构酶调节内皮一氧化氮合酶
- 批准号:
8645716 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
RECEPTOR AND TRANSPORTER REGULATION OF NO SYNTHASES
无合酶的受体和转运蛋白调节
- 批准号:
6390243 - 财政年份:1999
- 资助金额:
$ 36.41万 - 项目类别:
RECEPTOR AND TRANSPORTER REGULATION OF NO SYNTHASES
无合酶的受体和转运蛋白调节
- 批准号:
6537516 - 财政年份:1999
- 资助金额:
$ 36.41万 - 项目类别:
RECEPTOR AND TRANSPORTER REGULATION OF NO SYNTHASES
无合酶的受体和转运蛋白调节
- 批准号:
6184598 - 财政年份:1999
- 资助金额:
$ 36.41万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
- 批准号:
10830194 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
- 批准号:
10606952 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Nitric oxide Releasing Ultra-Slippery Antibacterial Surfaces for Urological Catheter Applications
用于泌尿导管应用的一氧化氮释放超光滑抗菌表面
- 批准号:
10759903 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别: