PET Radiopharmaceutical Sciences

PET 放射性药物科学

基本信息

项目摘要

The Molecular Imaging Branch (MIB) aims to exploit positron emission tomography (PET) as a radiotracer imaging technique for investigating neuropsychiatric disorders, such as autism, depression, addiction, schizophrenia and Alzheimer's disease. Fundamental to the mission of the MIB is the development of novel radioactive probes (radiotracers) that can be used with PET to deliver new and specific information on molecular entities and processes in living animal or human brain (e.g., regional neuroreceptor densities, neurotransmitter synthesis, enzyme concentrations, amyloid deposition, drug efflux from brain). PET is a uniquely powerful and sensitive imaging modality for such purposes when successfully coupled to appropriate PET radiotracers. The chemical development of new radiotracer types is the key to exploiting the full potential of PET in neuropsychiatric research. Such radiotracer development is widely recognized as being a highly challenging and demanding scientific task. In fact, the number of potentially interesting imaging targets far exceeds the range of available and useful radiotracers. Within MIB, our laboratory, the PET Radiopharmaceutical Sciences Section, places a concerted effort on all medicinal chemistry and radiochemical aspects of PET radiotracer discovery. This research activity has some parallels with drug discovery in terms of required effort and risk, because successful PET probes must fulfill a difficult-to-satisfy range of chemical, pharmacological and biological criteria. In support of our mission, our laboratories are equipped to perform medicinal chemistry and automated radiochemistry with positron-emitting carbon-11 (t1/2 = 20 min) and fluorine-18 (t1/2 = 110 min). These two short-lived radioisotopes are available to us daily from the adjacent cyclotrons of the NIH Clinical Center (Chief Dr. P. Herscovitch). We are developing novel probes for studying many different brain proteins that are implicated in neuropsychiatric disorders. Examples are cannabinoid (CB-1), serotonin (5-HT1A, 5-HT4), TSPO (formerly known as PBR), nociceptin (NOP), histamine-H3, oxytocin and glutamate (mGlu1, mGlu5)receptors, efflux transporters (P-gp, BCRP) and protein deposits such as beta-amyloid and tau fibrils. Our Section interacts seamlessly with the Imaging Section of our Branch (Chief: Dr. R.B. Innis) for early evaluation of potential radiotracers in animals. Subsequent PET research in human subjects is also performed in collaboration with the Imaging Section under Food and Drug Administration oversight through 'exploratory' or full investigational new drug applications (expINDs or INDs, respectively). Our research has provided a stream of new radiotracers for TSPO, CB-1, mGluR5, NOP and P-gp for brain imaging in human subjects in support of clinical research and drug development. Two radiotracers (C-11PBR28 and F-18FBR), developed successfully for TSPO imaging, are being applied for the investigation of brain inflammatory conditions in response to neurological insults e.g., traumatic brain injury, stroke, epilepsy and neurodegeneration (Alzheimer's disease). Other institutions (e.g., Karolinska Institutet) have also taken up the use of these radiotracers. An interesting and unexpected finding is that healthy human subjects have one or both of two different forms of TSPO that interact differently with C-11PBR28. New less discriminatory TSPO radioligands would therefore be useful and are under development. One of these will soon be evaluated in hunan subjects. CB-1 receptors are the brain proteins acted upon by cannabis. Our new CB-1 radiotracers (11CMePPEP and F-18FMPEP) find application for the study of drug addiction, including cannabis use and alcoholism. Indeed, a recent study from our Branch with 11CMePPEP reveals definite changes in brain CB1 receptors in response to cannabis or alcohol. The use of C-11MEPPEP is also being taken up elsewhere. We are evaluating a further CB1 receptr radiotracer with PET in human subjects to assess its relative merits. Our research has also led to a radiotracers that is useful for studying CB1 receptors with an alternative imaging modality (SPECT). Our GluR5 radiotracers(F-18SP203, C-11SP203) are expected to have value for the study of Fragile X syndrome, other autism conditions, addiction, and schizophrenia. They may also expedite drug discovery for conditions such as Fragile X, since potentially they may be used in drug-receptor occupancy (RO) studies to determine dosing regimes to be used in clinical trials. The imaging of the function of the drug efflux pump (e.g., P-gp) at the blood-brain barrier is an area of interest in our laboratory with relevance to drug development for neuropsychiatric disorders. We have developed a much improved radiotracer, named C-11dLop, for this purpose. C-11dLop may have value for assessing the role of efflux pumps in Alzheimer's disease and other neurodegenerative disorders (e.g., Parkinson's disease). A radiotracer for imaging P-gp density is sought in addition to our radiotracer of function. Radiotracers for other efflux pumps, such as BCRP are also sought, as are radiotracers capable of measuring increased efflux transporter action. Some of our radiotracers are likely to have value for diseases that present outside the brain. Thus, the TSPO radiotracers may have value for the study of inflammation in the periphery (e.g., as occurs in atherosclerosis), and the P-gp radiotracer for the study of cancer (especially multi-drug resistance). Methodology underpinning our radiotracer development was also advanced in areas such as the development of new synthetic methods, new radiolabeling procedures, and the application of micro-reactors to the miniaturization of radiochemistry. We have combined the use of microfluidics with a new F-18 labeling strategy to great effect, thereby expanding the number and type of candidate F-18 labeled radiotracers that may be produced. Such advances are vital for facilitating radiotracer applications. New analytical methods, based on for example liquid chromatography coupled to mass spectrometry (LC-MS), have also been developed and exploited to understand the biochemical fate of radiotracers in living systems. This information is needed to fully understand the results from PET experiments and to derive meaningful output measures, such as brain receptor concentrations. Sensitive LC-MS/MS has been introduced for the measurement of radiotracer half-life and specific radioactivity, and is also being investigated for the measurement of radiotracer concentration in blood following intravenous administration. The use of LC-MS/MS avoids the need to measure fast-decaying radioactivity. Productive collaborations have been established with external academic chemistry and medicinal chemistry laboratories, nationally and internationally, and also with pharmaceutical companies through CRADAs (Cooperative Research and Development Agreements) and the Biomarker Consortium of the Foundation for NIH. Productive collaborations also exist with other centers working with PET and its associated radiochemistry and radiotracer development. The laboratory is active in training new scientists for this field at all levels. In addition, we produce some useful radiotracers that have been developed elsewhere for PET investigations in animal or human subjects e.g., C-11CUMI (5-HT1A receptor imaging), and C-11rolipram (PDE4 enzyme imaging). The production of such radiotacers for use in human subjects also complies with (Food and Drug Administration) FDA requirements under expINDS or INDs. Each PET experiment with any radiotracer requires a radiosynthesis of the radiotracer on the same day, and hence radiotracer production is a regular activity. About 300 productions are performed annually
分子成像分支(MIB)旨在利用正电子发射断层扫描(PET)作为一种用于研究神经精神疾病的放射性成像技术,例如自闭症,抑郁症,成瘾,精神分裂症和阿尔茨海默氏病。 MIB任务的基础是新型放射性探针(放射性示踪剂)的开发,这些探针可与PET一起用于生存动物或人脑中的分子实体和过程的新和具体信息(例如,区域神经感受器密度,神经释放剂,神经释放剂,神经释放剂合成,酶浓度,氧化剂浓度,amyymyoid dempording,amyymyoid dembording,brine grain,Brinabing brine)。 PET成功地耦合到适当的PET放射性示例时,是一种独特的强大和敏感的成像方式。新的放射性示意剂类型的化学发展是利用PET在神经精神研究中的全部潜力的关键。这种放射性示踪剂的发展被广泛认为是一项高度挑战和苛刻的科学任务。 实际上,潜在有趣的成像靶标远远超过了可用和有用的放射性示例范围。 在MIB内,我们的实验室,PET放射性药物科学部分,对PET Radiotracer Discovery的所有药物化学和放射化学方面进行了一致的努力。这项研究活动与发现的努力和风险有关,因为成功的PET探针必须实现难以满足的化学,药理和生物学标准。为了支持我们的任务,我们的实验室有能力进行药物化学和自动放射化学,并使用正电子发射碳11(T1/2 = 20 min)和氟-18(T1/2 = 110分钟)进行药物化学和自动放射化学。 NIH临床中心(P. P. Herscovitch博士)每天都可以从我们每天提供这两个短暂的放射性同位素。 我们正在开发新的探针来研究与神经精神疾病有关的许多不同脑蛋白。 Examples are cannabinoid (CB-1), serotonin (5-HT1A, 5-HT4), TSPO (formerly known as PBR), nociceptin (NOP), histamine-H3, oxytocin and glutamate (mGlu1, mGlu5)receptors, efflux transporters (P-gp, BCRP) and protein deposits such as beta-amyloid and tau原纤维。我们的部分与我们分支的成像部分(首席:R.B. Innis博士)无缝相互作用,以对动物的潜在放射性示踪剂进行早期评估。随后的人类受试者的宠物研究也通过“探索性”或全面的研究新药应用(分别为预测或IND)与食品和药物管理局监督下的成像部分合作进行。 我们的研究为TSPO,CB-1,MGLUR5,NOP和P-GP提供了新的放射性示例,用于支持临床研究和药物开发的人类受试者的大脑成像。 成功开发用于TSPO成像的两种放射性示例(C-11PBR28和F-18FBR)正在用于研究脑部炎症条件,以应对神经系统损伤,例如,创伤性脑损伤,中风,癫痫,癫痫和神经变性(阿尔茨海默氏病)。其他机构(例如Karolinska Institutet)也采用了这些放射性示踪剂的使用。 一个有趣且出乎意料的发现是,健康的人类受试者具有与C-11PBR28不同相互作用的两种不同形式的TSPO中的一种或两个。 因此,新的较不歧视性的TSPO放射线将是有用的,并且正在开发中。其中之一将很快在湖南受试者中进行评估。 CB-1受体是大麻作用的脑蛋白。我们的新CB-1放射性示例(11cmeppep和F-18FMPEP)找到了用于研究药物成瘾的应用,包括大麻使用和酒精中毒。 实际上,我们分支机构的最新研究表明,脑CB1受体对大麻或酒精的反应有明显的变化。 C-11Meppep的使用也正在其他地方进行。我们正在评估人类受试者中使用PET的进一步的CB1 receptr radiotracer评估其相对优点。我们的研究还导致了一种放射性示例,该放射性示例可用于研究具有替代成像方式(SPECT)的CB1受体。我们的GLUR5放射性示例(F-18SP203,C-11SP203)预计将对脆弱X综合征,其他自闭症,成瘾和精神分裂症的研究具有价值。它们还可以加快诸如易碎X等疾病的药物发现,因为它们可能会用于药物受体占用(RO)研究以确定用于临床试验中的剂量方案。 血脑屏障的药物外排泵(例如P-gp)功能的成像是我们实验室感兴趣的领域,与神经精神疾病的药物发育有关。为此,我们开发了一种改进的Radiotracer,称为C-11DLOP。 C-11DLOP可能具有评估外排泵在阿尔茨海默氏病和其他神经退行性疾病(例如帕金森氏病)中的作用的价值。 除了我们的放射性功能外,还要寻找用于成像P-gp密度的放射性示例。还寻求用于其他外排泵(例如BCRP)的放射性示例,以及能够测量外排转运蛋白作用增加的放射性示例。 我们的一些放射性示例可能对出现在大脑外部的疾病具有价值。因此,TSPO放射性示踪剂可能具有对周围炎症的研究(例如,如动脉粥样硬化中发生)和用于癌症研究(尤其是多药耐药性)的P-gp放射性示例。 在新的合成方法的发展,新的放射性标记程序以及将微反应器应用于放射化学的小型化化学化化学方面,基于我们的放射性培训发展的方法也得到了进步。我们将微流体的使用与新的F-18标签策略相结合,从而效果很大,从而扩大了可能产生的标记为放射性示踪剂的候选F-18的数量和类型。 此类进步对于促进放射性示踪剂的应用至关重要。也已经开发和利用了基于与质谱(LC-MS)(LC-MS)(LC-MS)(LC-MS)的液相色谱法(LC-MS)的新分析方法。 需要此信息以充分了解PET实验的结果并得出有意义的输出度量,例如大脑受体浓度。已经引入了敏感的LC-MS/MS,以测量放射性的半衰期和特异性放射性,并正在研究用于测量静脉内给药后血液中放射性示意剂浓度的测量。 LC-MS/MS的使用避免了测量快速分娩放射性的需要。 已经在国内和国际上与外部学术化学和药物化学实验室建立了生产性合作,并通过Cradas(合作研究与发展协议)和NIH基金会的生物标志物联盟与制药公司建立了合作。与宠物及其相关放射化学和放射性培训的其他中心的其他中心也存在生产性合作。 该实验室积极培训各个级别的新科学家。 此外,我们生产了一些有用的放射性示例,这些放射性示例是在其他地方开发的,用于在动物或人类受试者中进行宠物研究,例如C-11CUMI(5-HT1A受体成像)和C-11ROLIPRAM(PDE4酶成像)。在人类受试者中使用此类放射性剂的生产也符合(食品和药物管理)在注册或IND中的FDA要求。 每个使用任何放射性示例的PET实验都需要同一天的放射性示例的放射性合成,因此放射性示意剂的产生是常规的活性。 每年大约进行300种作品

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor W Pike其他文献

Victor W Pike的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor W Pike', 18)}}的其他基金

PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    8342130
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    8158099
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    8939964
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    7136367
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    7594543
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    7969360
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    10012697
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    6982709
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    8745705
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:
PET Radiopharmaceutical Sciences
PET 放射性药物科学
  • 批准号:
    10266590
  • 财政年份:
  • 资助金额:
    $ 343.24万
  • 项目类别:

相似国自然基金

GW441756基于重塑Thrap3转录调控网络改善非酒精性脂肪肝的新机制
  • 批准号:
    82304586
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肝细胞因子ORM2通过抑制Kupffer细胞激活改善非酒精性脂肪性肝炎的作用及机制研究
  • 批准号:
    82300966
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
生物钟基因Nr1d1通过调控NLRP3焦亡通路抑制非酒精性脂肪性肝炎进展的机制研究
  • 批准号:
    82300652
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ANT1通过ATP分子募集巨噬细胞调控非酒精性脂肪肝运动敏感性的作用及机制研究
  • 批准号:
    82370579
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
葡糖基神经酰胺酶GBA通过激活SREBP2-PCSK9调控LDLR代谢紊乱并抑制自噬促进非酒精性脂肪性肝炎进展的机制研究
  • 批准号:
    82300653
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304861
  • 财政年份:
    2023
  • 资助金额:
    $ 343.24万
  • 项目类别:
    Continuing Grant
STTR Phase I: Development of Modular Reactors to Convert Methane to Alcohols at Low Temperatures
STTR 第一阶段:开发在低温下将甲烷转化为醇的模块化反应器
  • 批准号:
    2151256
  • 财政年份:
    2023
  • 资助金额:
    $ 343.24万
  • 项目类别:
    Standard Grant
Development of amine-dehydrogenase and lyase biocatalysts for the sustainable manufacturing of unnatural chiral amino acids and amino alcohols
开发胺脱氢酶和裂解酶生物催化剂,用于可持续生产非天然手性氨基酸和氨基醇
  • 批准号:
    2870226
  • 财政年份:
    2023
  • 资助金额:
    $ 343.24万
  • 项目类别:
    Studentship
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304860
  • 财政年份:
    2023
  • 资助金额:
    $ 343.24万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Development of Selective Reaction Schemes for Photoactivation of Alcohols
博士后奖学金:MPS-Ascend:醇光活化选择性反应方案的开发
  • 批准号:
    2316541
  • 财政年份:
    2023
  • 资助金额:
    $ 343.24万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了