A QUANTUM MECHANICAL APPROACH FOR EXPLORING HIV DRUG RESISTANCE
探索 HIV 耐药性的量子力学方法
基本信息
- 批准号:8171876
- 负责人:
- 金额:$ 0.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino Acid MotifsAmino AcidsAspartateBindingBinding SitesBioinformaticsBiologyCarbonCatalytic DomainCerealsChargeChemicalsCollaborationsComputer AnalysisComputer Retrieval of Information on Scientific Projects DatabaseComputer SimulationDatabasesDevelopmentDrug Binding SiteDrug DesignDrug resistanceElectronsElectrostaticsEnvironmentExcisionExperimental DesignsFrequenciesFundingGasesGrantHIVHIV InfectionsHIV drug resistanceHIV-1 Reverse TranscriptaseHIV-1 drug resistanceHydrazonesHydrogenHydrogen BondingInduced MutationInstitutionLaboratoriesLeadMeasurementMeasuresMechanicsMethionineModelingMolecularMolecular ConformationMutateMutationNevirapineNitrogenNucleosidesPatternPeptidesPharmaceutical PreparationsPharmacologyPhasePilot ProjectsPoint MutationPolymerasePositioning AttributeProductionProteinsRNARNA-Directed DNA PolymeraseResearchResearch PersonnelResistanceResourcesReverse Transcriptase InhibitorsRibonuclease HSimulateSiteSite-Directed MutagenesisSolutionsSolventsSourceStructureSumSurfaceSurveysThermodynamicsTyrosineUnited States National Institutes of HealthUniversitiesVariantVertebral columnViralWateranalogbasecombatdensitydesignelectronic structurefitnessflexibilityinhibitor/antagonistinsightinterestmathematical modelmolecular dynamicsmutantnetwork modelsnevirapine resistancenon-nucleoside reverse transcriptase inhibitorsnovelparallel processingpolypeptidepreventprogramsprotein structure functionquantumresistance mechanismsimulationtheories
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The majority of drugs that are effective against HIV infection interfere with viral
reverse transcriptase (RT). These drugs include nucleoside reverse transcriptase
inhibitors (NRTI) that directly interfere with the polymerase catalytic site in RT and
non-nucleoside reverse transcriptase inhibitors (NNRTI) that influence polymerase
activity through an allosteric mechanism [1]. Recently drugs that inhibit the RNA
removal function (RNH) of RT without affecting polymerase activity have also been
discovered. Unfortunately, drug resistance develops rapidly to all these agents due
to the high mutation rate of the HIV virus. Residue changes may eliminate favorable
binding interactions or they may block drug access through steric effects. They may
also interfere with flexibility preventing "induced fits" at the binding site or they may
alter allosteric effects. A mathematical model that could predict and quantify the local
and remote effects of mutations on drug binding and catalytic activity could lead to
new strategies for combating drug resistance. Pilot studies on HIV-1 RT bound to the
inhibitor dihydroxy benzoyl napthyl hydrazone (DHBNH) indicate this is feasible. The
basic approach involves the application of quantum mechanical (QM) calculations to
analyze selected regions of interest (QMROI). The main idea is to create a "quantum
mechanical laboratory" that can be perturbed in silico to model the effects of
mutations on drug binding and catalytic sites. Previous attempt to use QM for this
purpose have treated drug binding as the sum of the interactions between drugs
and isolated amino acid residues [2]. The QMROI approach seeks to create a more
realistic local binding environment with complete polypeptide chains. Such an
environment has a better chance for identifying the conformational changes leading
to drug resistance. The QMROI is centered on the binding site and includes the
bound drug and all residues containing atoms within 9 ¿ of the center of the site.
Residues are added as necessary to create a set of short continuous polypeptide
chains defining the binding site. The ends of these chains are capped with hydrogens
to saturate the open valences. This is accomplished on the N-terminus by mutating
the amino nitrogen to hydrogen. On the C-terminus, the carbonyl carbon is mutated
to hydrogen. The positions of these hydrogen "cap" atoms are fixed during geometric
optimization to lock in the conformational state imposed on the QMROI by the
surrounding protein. All remaining atoms in the QMROI are unconstrained. The
electrostatic effect of the surrounding protein is simulated by optimizing at set of
point charges distributed on a surface surrounding the QMROI. In the case of RT, the
QMROI contains ~400-500 atoms. This QMROI is large enough to include all the
atoms in the bound drug and all the residues with polarizable atoms that are close
enough to influence the drug binding site. It is also large enough to capture the
highly conserved tyrosine-methionine-aspartate-aspartate (YMDD) motif in the
polymerase catalytic site. The geometry of each QMROI structure is determined by
numerical solution of its molecular wavefunction at a density function theory (DFT)
level (b3lyp/6-31g(d,p)) of QM theory [3]. All calculations are carried out using the
Gaussian'03" suite of programs. Binding energies are determined by applying
frequency and single point energy studies to the drug and protein components of the
optimized QMROI. The binding energy is calculated as the difference between the
total energy of the protein with bound drug and the total energies of the protein and
drug by themselves. Frequency calculations are carried out to obtain zero point
energy corrections and thermodynamic functions. The effects of mutations on drug
binding are studied by replacing the residue sidechains in silico followed by new
QMROI calculations. The conformational states available to the QMROI atoms are
simulated by varying the positions of the fixed hydrogen cap atoms that anchor the
ends of the set of polypeptide chains that define the QMROI. The allowable variance
in the pairwise positions between these fixed cap atoms is determined by the
positional variation observed in different crystallographic structures, molecular
dynamics (MD) simulations or coarse grained models such as the anisotropic elastic
network model (ANM). The QMROI model provides a means for determining the effect
of any mutation on drug binding using electronic structure calculations. Measurement
of the distortion created in key amino acid motifs in catalytic binding sites provides a
measure of the "fitness" of a given mutant to carry out its catalytic function. Such
distortions can be quantified in terms of atomic displacements, changes in the
dihedral angles of peptide backbone atoms or alterations in hydrogen bonding
patterns. The QMROI model represents the first quantum mechanical approach to the
problem of HIV drug resistance that addresses drug binding energy, local and global
conformational change and the electrostatic effect of the surrounding protein and
solvent environment. The QMROI model provides quantitative information about the
steric alterations in drug binding sites induced by mutations. In many cases, this
information is not available through purely experimental approaches. Detailed
information about geometric relationships in drug binding sites is essential for
rational drug design. Even though the QMROI model is intense from the calculation
standpoint, this approach is suitable for mass production using parallel processing in
modern clusters. The experimental design for the initial phase of the project focuses
on two regions of interest. The first is the binding site for the NNRTI inhibitor
nevirapine (PDB 1vrt). The second is the binding site for the RNH inhibitor DHBNH
(2i5j). Both of these binding sites are adjacent to the RT polymerase catalytic site
and both binding sites have overlapping components. Binding in both instances also
involves an "induced fit". More importantly, the QMROI regions both overlap the
critical YMDD motif in the polymerase catalytic site. The geometry of each QMROI will
initially be optimized with no mutations. Two conformational states defined by the
position of the fixed cap atoms in the QMROI will be studied for both drugs. These
states will represent the maximum and minimum pairwise separation between fixed
atoms estimated from a survey of the available crystallographic structures in the
protein data bank (PDB). The YMDD motif between the two states will be compared.
If distortion of this motif is the basis for NNRTI inhibition, it should be at a maximum in
the NNRTI set and absent or minimal in the RNH set. Baseline QMROI regions will also
be studied for each binding site without the presence of the inhibitor drugs. This will
be accomplished using the conformations available from a 25 ns MD simulation of 2i5j
in explicit water without DHBNH. This simulation was carried out as part of the pilot
studies exploring the feasibility of this approach. When analysis of the binding
energies and YMDD distortion is complete for both drugs and both baseline regions,
the complete set will be restudied with seven different point mutations. The
mutations will be selected from the list of mutations that are known to confer
nevirapine resistance. Mutations conferring DHBNH resistance have not yet been
identified. The mutations considered will be L100I, K103N, V106A, V108I, Y181C,
Y188H and G190S [1]. Binding energies, geometric alterations and changes in the
critical YMDD motif calculated for each mutant will be compared with the
corresponding parameters calculated for the wild type. The geometric alterations in
the YMDD motif in the bound and unbound states will also be analyzed to determine
the influence of drug binding on the polymerase catalytic site. Analysis will provide
insight into the mechanism of resistance conferred by each mutation. More
importantly, it will provide geometric information about the drug and the binding site
that can be used for the rational design of drug analogs. The second phase of the
project will combine in silico QMROI studies with experimental approaches. This will
be accomplished through collaborations with the laboratory of Michael Parniak at the
University of Pittsburgh. This laboratory is focused on the development of new RT
inhibitors that target the RNH site [4]. The QMROI approach will be used to study the
effects of potential new inhibitory compounds, to guide the design of such
compounds and to judge the potential effects of mutations that have not yet been
observed. Such studies will also be used to guide site-directed mutagenesis studies
of HIV-1 drug resistance. 1. Ilina T, Parniak MA: Inhibitors of HIV-1 Reverse
Transcriptase. Advances in Pharmacology, 56:121-167, 2008. 2. He X, Mei Y, Xiang Y,
Zhang DW, Zhang JZ: Quantum Computational Analysis for Drug Resistance of HIV-1
Reverse Transcriptase to Nevirapine through Point Mutations. Proteins: Structure,
Function and Bioinformatics, 61:423-432, 2005. 3. Kohn W, Sham LJ: Quantum
Density Oscillations in an Inhomogeneous Electron Gas. Phys. Rev., 137(6A):1697-
1705, 1965. 4. Himmel DM, Sarafinos SG, Dharmasina S, Parniak MA, et al: HIV-1
Reverse Transcriptase Structure with RNase H Inhibitor Dihydroxy Benzoyl Naphthyl
Hydrazone Bound at a Novel Site. ACS Chemical Biology, 1:702-711, 2006.
该副本是使用众多研究子项目之一
由NIH/NCRR资助的中心赠款提供的资源。主题项目和
调查员(PI)可能已经从其他NIH来源获得了主要资金,
因此可以在其他清晰的条目中代表。列出的机构是
对于中心,这是调查员的机构。
大多数针对HIV感染干扰病毒有效的药物
逆转录酶(RT)。这些药物包括核苷逆转录酶
直接干扰RT中聚合酶催化位点的抑制剂(NRTI)
影响聚合酶的非核苷逆转录酶抑制剂(NNRTI)
通过变构机制的活动[1]。最近抑制RNA的药物
RT的去除功能(RNH)也没有影响聚合酶活性
发现。不幸的是,耐药性迅速发展为所有这些代理
达到HIV病毒的高突变率。残留变化可能会消除有利的
结合相互作用,或者它们可能通过空间效应阻止药物进入。他们可能
还要干扰柔韧性,以防止在结合位点“诱发拟合”,否则它们可能会
改变变构效应。可以预测和量化本地的数学模型
突变对药物结合和催化活性的远程影响可能导致
打击耐药性的新策略。有关HIV-1 RT的试点研究
抑制剂二羟基苯甲酰二酰基羟基羟基(DHBNH)表明这是可行的。这
基本方法涉及将量子机械(QM)计算应用到
分析选定的感兴趣区域(QMROI)。主要想法是创建一个“量子”
机械实验室”可以在硅中扰动,以建模
药物结合和催化位点的突变。以前尝试使用QM
目的将药物结合视为药物之间相互作用的总和
和分离的氨基酸残基[2]。 QMROI方法试图创建更多
现实的局部结合环境,具有完整的多肽链。这样的
环境有更好的机会确定构象变化的领先
具有耐药性。 QMROI以绑定位点为中心,包括
在该地点中心的9`绑定药物和所有包含原子的残留物。
根据需要添加残留物以创建一组短的连续多肽
定义结合位点的链。这些链的末端用氢盖了
饱和开放价。这是通过突变在N末端完成的
氨基氮氮至氢。在C末端,羰基碳被突变
到氢。这些氢“盖”原子的位置在几何过程中是固定的
优化以锁定对QMROI施加的构象状态
周围蛋白质。 QMROI中的所有剩余原子都是不受限制的。这
通过优化一组,模拟周围蛋白质的静电效应
点电荷分布在QMROI周围的表面上。在RT的情况下
QMROI包含约400-500个原子。这个Qmroi足够大,可以包括所有
结合药物中的原子和所有残留物具有近距离原子的原子
足以影响药物结合位点。它也足够大,可以捕获
高度配置的酪氨酸 - 甲硫代硫代天冬氨酸天冬氨酸(YMDD)主题
聚合酶催化位点。每个QMROI结构的几何形状由
其分子波函数在密度函数理论(DFT)上的数值解
QM理论的水平(B3LYP/6-31G(D,P))[3]。所有计算均使用
Gaussian'03“程序套件。绑定能量是通过应用确定的
用于药物和蛋白质成分的频率和单点能量研究
优化的QMROI。结合能计算为
蛋白质的总能量与结合药物以及蛋白质的总能量
独自吸毒。进行频率计算以获得零点
能量校正和热力学功能。突变对药物的影响
通过更换硅中的住所侧chain,然后是新的,然后是新的,然后是新的
QMROI计算。 QMROI原子可用的构象状态是
通过改变固定的固定氢帽原子的位置来模拟
定义QMROI的多肽链的末端。允许方差
在这些固定盖原子之间的成对位置,由
位置变异在不同的晶体学结构中观察到的分子
动力学(MD)模拟或粗粒模型,例如各向异性弹性
网络模型(ANM)。 QMROI模型提供了确定效果的手段
使用电子结构计算对药物结合的任何突变。测量
在催化结合位点中关键氨基酸基序中产生的失真,提供了
给定突变体的“适应性”来执行其催化功能。这样的
可以根据原子位移来量化扭曲
胡椒骨架原子的二面角或氢键变化
模式。 QMROI模型代表了第一种量子机械方法
HIV耐药性问题,该问题解决了局部和全球药物结合能的问题
周围蛋白质的构象变化和静电效应
溶剂环境。 QMROI模型提供了有关
由突变诱导的药物结合位点的空间改变。在许多情况下,这个
信息无法通过纯粹的实验方法获得。详细的
关于药物结合位点几何关系的信息对于
理性药物设计。即使QMROI模型从计算中很强烈
角度,这种方法适用于使用并行处理中的大规模生产
现代集群。项目初始阶段的实验设计集中在
在两个感兴趣的地区。第一个是NNRTI抑制剂的结合位点
奈韦拉平(PDB 1VRT)。第二个是RNH抑制剂DHBNH的结合位点
(2I5J)。这两个结合位点都与RT聚合酶催化位点相邻
并且两个绑定位点都有重叠的组件。在这两种情况下也具有约束力
涉及“诱导的拟合”。更重要的是,QMROI地区都重叠
聚合酶催化位点中的临界YMDD基序。每个Qmroi的几何形状将
最初在没有突变的情况下进行优化。两个由
QMROI中固定帽原子的位置将用于两种药物的研究。这些
状态将表示固定之间的最大和最小成对分离
根据对可用晶体学结构的调查估计的原子
蛋白质数据库(PDB)。将比较两种状态之间的YMDD图案。
如果该基序的失真是NNRTI抑制的基础,则应最大
RNH集合中的NNRTI集合和不存在或最小。基线QMROI地区也将
在不存在抑制剂药物的情况下对每个结合位点进行研究。这会
可以使用25 ns MD模拟2i5j的构象来完成
在没有DHBNH的显式水中。该模拟是作为飞行员的一部分进行的
研究探讨了这种方法的可行性。当分析结合
对于两种药物和两个基线区域,能量和YMDD失真都是完整的,
完整的组将通过七个不同的点突变恢复。
将从会议已知的突变列表中选择突变
奈韦拉平的抗性。突变会议DHBNH的抵抗还没有
确定。所考虑的突变将是L100I,K103N,V106A,V108I,Y181C,
Y188H和G190S [1]。结合能,几何改变和变化
将为每个突变体计算的临界YMDD基序将与
针对野生类型计算的相应参数。几何改变
还将分析边界和未结合状态中的YMDD图案以确定
药物结合对聚合酶催化位点的影响。分析将提供
洞悉每个突变赋予的抗性机制。更多的
重要的是,它将提供有关药物和结合位点的几何信息
可以用来用于制定类似物的合理设计。第二阶段
项目将与实验方法结合使用硅QMROI研究。这会
可以通过与迈克尔·帕尼亚克(Michael Parniak)的实验室合作完成
匹兹堡大学。该实验室的重点是开发新的RT
靶向RNH位点的抑制剂[4]。 QMROI方法将用于研究
潜在的新抑制化合物的影响,以指导这种设计
化合物并判断尚未发生的突变的潜在影响
观察到。此类研究还将用于指导定位的诱变研究
HIV-1耐药性。 1。IlinaT,帕尼亚克MA:HIV-1的抑制剂反向
转录酶。药理学的进步,56:121-167,2008。2。他X,Mei Y,Xiang Y,
张DW,张JZ:HIV-1耐药性的量子计算分析
通过点突变逆转录酶到奈韦拉平。蛋白质:结构,
功能与生物信息学,61:423-432,2005。3。科恩W,假LJ:量子
不均匀电子气体中的密度振荡。物理。修订版,137(6a):1697-
1705,1965。4。Himmel DM,Sarafinos SG,Dharmasina S,Parniak MA等:HIV-1
带有RNase H抑制剂二羟基苯甲酰甲酰基的逆转录酶结构
挂索在一个新颖的地点绑定。 ACS化学生物学,1:702-711,2006。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN Kenric VRIES其他文献
JOHN Kenric VRIES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN Kenric VRIES', 18)}}的其他基金
A QUANTUM MECHANICAL APPROACH FOR EXPLORING HIV DRUG RESISTANCE
探索 HIV 耐药性的量子力学方法
- 批准号:
7956337 - 财政年份:2009
- 资助金额:
$ 0.14万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10165490 - 财政年份:2020
- 资助金额:
$ 0.14万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10598522 - 财政年份:2020
- 资助金额:
$ 0.14万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10910349 - 财政年份:2020
- 资助金额:
$ 0.14万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10393605 - 财政年份:2020
- 资助金额:
$ 0.14万 - 项目类别:
Measuring and modeling the dynamics of patterning in human stem cells
人类干细胞模式动态的测量和建模
- 批准号:
10318976 - 财政年份:2019
- 资助金额:
$ 0.14万 - 项目类别: