The non-hypertrophic role of calcineurin in regulating cardiac structure-function
钙调神经磷酸酶在调节心脏结构功能中的非肥厚作用
基本信息
- 批准号:8012835
- 负责人:
- 金额:$ 5.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-15 至 2011-12-14
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdrenergic AgentsAdultAmericanBiologyCalcineurinCalcineurin inhibitorCardiacCardiac MyocytesCardiovascular DiseasesCell physiologyCellsCessation of lifeCouplingCritical PathwaysDevelopmentDiagnosisGene ExpressionGene TransferGeneticGenetic ModelsGenetic TranscriptionGrantGrowthHeartHeart DiseasesHeart failureHypertrophyIn VitroInvestigationLanguageLeft Ventricular FunctionMeasurementMediatingMolecularMorphologyMusMuscle CellsMuscle functionMyocardiumOutcomePathologicPathway interactionsPerformancePhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlayProcessProtein phosphataseProteinsProteomicsRattusRegulationRelaxationReportingRoleSignal TransductionSmall Interfering RNAStagingStressStructureTestingTissuesTransgenesVentricularVentricular FunctionVentricular RemodelingWorkadrenergiccomparativedesignfunctional outcomesin vivoinhibitor/antagonistinnovationinsightmouse modelnew growthnovel therapeuticsprematureresponseventricular hypertrophy
项目摘要
DESCRIPTION (provided by applicant): Over 5 million Americans are diagnosed with heart failure yearly. Heart failure is generally accompanied by pathologic growth of the heart. Calcineurin signaling is an essential regulator of the hypertrophic response. A new non-hypertrophic role for calcineurin is emerging, in which calcineurin might directly maintain viability and cardiac performance, as mice with cardiac-specific calcineurin deletion have normal cardiac morphology but poor left ventricular function and premature death. To date the direct versus compensatory effects of calcineurin deletion on cardiac function remain unresolved, and reports show both positive and negative functional outcomes in calcineurin-deleted cardiac muscle. Substantial alterations in Ca2+ handling gene expression were identified in a screen of calcineurin deficient hearts. This suggests that calcineurin may regulate Ca2+ cycling proteins, which are critical functional components, as fluctuations in cytosolic Ca2+ initiate contraction and relaxation. Thus, this proposal seeks to test the hypothesis that calcineurin is directly regulating hypertrophy-independent cardiac viability and ventricular performance through post-translational and NFAT-dependent regulation of Ca2+ handling. This grant features a comparative analysis of acute gene transfer of calcineurin-targeted siRNA to cardiac myocytes and a conditional Lox-P targeted calcineurin mouse model to elucidate the direct versus indirect effects of calcineurin loss on cardiac myocyte function in vitro (aiml), and to determine the phosphorylation status of Ca2+ handling proteins (aim 2). Myocyte contractility will be examined in isolated cardiac myocytes from both genetic models using high fidelity cell shortening and Ca2+ measurements, while candidate protein and proteomic analysis will determine the phosphorylation status of Ca2+ handling proteins. A genetic rescue strategy will also be used to investigate if NFAT-dependent transcription underlies the poor survivability in calcineurin deficient mice (aim 3). This proposal should make substantial contributions to elucidating calcineurin's additional regulatory roles in the heart thereby laying the ground work for developing new therapeutic strategies for heart failure. Lay Language: Calcineurin-dependent pathologic growth of the heart is associated with end-stage heart failure. A new growth-independent regulatory role for calcineurin in cardiac function is now emerging that suggests calcineurin deletion can directly alter cardiac muscle function. This proposal is designed to elucidate the direct versus indirect effects of calcineurin on cardiac function independent of cardiac growth at the cellular and organismal level. The outcome of this work should make significant inroads into designing molecular heart failure therapies with translational potential.
描述(由申请人提供):每年有超过 500 万美国人被诊断患有心力衰竭。心力衰竭通常伴随着心脏的病理性生长。钙调神经磷酸酶信号传导是肥大反应的重要调节因子。钙调神经磷酸酶的一种新的非肥大作用正在出现,其中钙调神经磷酸酶可能直接维持活力和心脏性能,因为心脏特异性钙调神经磷酸酶缺失的小鼠具有正常的心脏形态,但左心室功能差和过早死亡。迄今为止,钙调磷酸酶缺失对心脏功能的直接影响和代偿性影响仍未解决,有报告显示钙调磷酸酶缺失的心肌具有积极和消极的功能结果。在钙调磷酸酶缺乏心脏的筛选中发现了 Ca2+ 处理基因表达的显着改变。这表明钙调神经磷酸酶可能调节 Ca2+ 循环蛋白,这是关键的功能成分,因为胞质 Ca2+ 的波动会引发收缩和舒张。因此,本提案旨在检验以下假设:钙调神经磷酸酶通过翻译后和 NFAT 依赖性的 Ca2+ 处理调节直接调节与肥大无关的心脏活力和心室性能。该资助的特点是对钙调磷酸酶靶向 siRNA 向心肌细胞的急性基因转移和条件性 Lox-P 靶向钙调磷酸酶小鼠模型进行比较分析,以阐明钙调磷酸酶损失对体外心肌细胞功能的直接与间接影响 (aiml),并确定 Ca2+ 处理蛋白的磷酸化状态(目标 2)。将使用高保真细胞缩短和 Ca2+ 测量来检查来自两种遗传模型的分离心肌细胞的心肌细胞收缩性,而候选蛋白质和蛋白质组分析将确定 Ca2+ 处理蛋白的磷酸化状态。基因拯救策略还将用于研究 NFAT 依赖性转录是否是钙调神经磷酸酶缺陷小鼠生存能力差的原因(目标 3)。该提案应为阐明钙调神经磷酸酶在心脏中的额外调节作用做出重大贡献,从而为开发新的心力衰竭治疗策略奠定基础。通俗语言:钙依赖磷酸酶依赖性心脏病理性生长与终末期心力衰竭相关。钙调磷酸酶在心脏功能中的一种新的生长独立调节作用正在出现,表明钙调磷酸酶缺失可以直接改变心肌功能。该提案旨在阐明钙调神经磷酸酶对心脏功能的直接和间接影响,与细胞和有机体水平上的心脏生长无关。这项工作的成果应该会在设计具有转化潜力的分子心力衰竭疗法方面取得重大进展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function.
- DOI:10.1074/jbc.m109.056143
- 发表时间:2010-02-26
- 期刊:
- 影响因子:0
- 作者:Maillet M;Davis J;Auger-Messier M;York A;Osinska H;Piquereau J;Lorenz JN;Robbins J;Ventura-Clapier R;Molkentin JD
- 通讯作者:Molkentin JD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Michelle Davis其他文献
Jennifer Michelle Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Michelle Davis', 18)}}的其他基金
Regulators of Myofibroblast State Stability & Fibrotic Responsiveness of the Heart
肌成纤维细胞状态稳定性的调节因子
- 批准号:
10634723 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Uncovering The Mechanogenomic Basis For Cardiac Plasticity
揭示心脏可塑性的机械基因组基础
- 批准号:
10186474 - 财政年份:2018
- 资助金额:
$ 5.3万 - 项目类别:
Integrating Transcriptome Reprogramming Into Cardiac Plasticity Regulatory Mechanisms
将转录组重编程整合到心脏可塑性调节机制中
- 批准号:
9902513 - 财政年份:2018
- 资助金额:
$ 5.3万 - 项目类别:
Integrating Transcriptome Reprogramming Into Cardiac Plasticity Regulatory Mechanisms
将转录组重编程整合到心脏可塑性调节机制中
- 批准号:
10371248 - 财政年份:2018
- 资助金额:
$ 5.3万 - 项目类别:
MBNL1's function in myofibroblast transformation and fibrosis
MBNL1 在肌成纤维细胞转化和纤维化中的功能
- 批准号:
8563861 - 财政年份:2013
- 资助金额:
$ 5.3万 - 项目类别:
MBNL1's function in myofibroblast transformation and fibrosis
MBNL1 在肌成纤维细胞转化和纤维化中的功能
- 批准号:
8719166 - 财政年份:2013
- 资助金额:
$ 5.3万 - 项目类别:
The non-hypertrophic role of calcineurin in regulating cardiac structure-function
钙调神经磷酸酶在调节心脏结构功能中的非肥厚作用
- 批准号:
7613570 - 财政年份:2008
- 资助金额:
$ 5.3万 - 项目类别:
The non-hypertrophic role of calcineurin in regulating cardiac structure-function
钙调神经磷酸酶在调节心脏结构功能中的非肥厚作用
- 批准号:
7784465 - 财政年份:2008
- 资助金额:
$ 5.3万 - 项目类别:
相似国自然基金
记忆再巩固中去甲肾上腺素能系统在药物依赖戒断后潜伏心理渴求中的作用
- 批准号:82001404
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
肾上腺素能受体SNPs及PWV、CBP对射血分数保留心衰的发病及药物敏感性的影响
- 批准号:81471402
- 批准年份:2014
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
Diversity Supplement to Beta-Adrenergic Modulation of Drug Cue Reactivity: Neural and Behavioral Mechanisms
药物提示反应性β-肾上腺素能调节的多样性补充:神经和行为机制
- 批准号:
10838177 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Beta-Adrenergic Modulation of Drug Cue Reactivity: Neural and Behavioral Mechanisms
药物提示反应性的β-肾上腺素调节:神经和行为机制
- 批准号:
10446411 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别: