Small Molecule Transcriptional Activator-Coactivator Interactions
小分子转录激活剂-辅激活剂相互作用
基本信息
- 批准号:8013603
- 负责人:
- 金额:$ 5.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAffinityAllosteric RegulationBindingBinding SitesBiological AssayCREB1 geneCellsCellular AssayChemosensitizationComplexCyclic AMP Response ElementCyclic AMP-Responsive DNA-Binding ProteinDNADNA BindingDNA Binding DomainDataDevelopmentDiseaseDisease PathwayDockingFluorescenceFluorescence PolarizationGene Expression RegulationGenesGenetic TranscriptionGoalsHIVHuman T-lymphotropic virus 1ImageIndividualJUN geneLeadLigandsMYB geneMolecularOutputPathway interactionsPatternPhosphotransferasesProteinsProto-Oncogene Proteins c-mybRelaxationReporterResearchResearch DesignResolutionRoleSideStructureTaxesTertiary Protein StructureTranscription CoactivatorTranscriptional ActivationTranscriptional Activation Domainanalogbasecellular targetingcombatdesignfunctional outcomesimprovedinsightmeetingsmodel designnext generationpublic health relevancequantumreconstitutionresearch studysmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): Small molecules capable of replicating the function of natural transcriptional activators through interactions with the transcriptional machinery are powerful tools for studying gene transcription and are emerging as a new strategy for combating disease. However, mimicking the function of natural activators with small molecules has proven challenging. Only two classes of small molecules have been designed that upregulate transcription in cells, whereas only amphiphatic isoxazolidines display potent activity at nanomolar concentrations. The KIX domain of an essential co-activator, cyclic-AMP response element-binding (CREB)-protein (CBP) was recently identified as one intercellular target for isoxazolidines capable of upregulating transcription. In contrast to many co-activators, KIX is a well-folded protein domain, biophysically characterized, and is allosterically controlled through two binding sites. KIX is therefore a prime target for studying structure and binding for the design of new functional small molecules capable of regulating transcription. This proposal uses KIX as a well-characterized, multi-functional target to develop a general platform for designing molecules that reconstitute the function of natural activators and will be accomplished through three specific aims: 1) Structural replication of natural activators 2) Binding analysis of an isoxazolidine:co-activator complex and 3) Functional replication of natural activators. Planned experiments to meet these goals will use fluorescence-based binding and 2D-NMR experiments to assess the binding affinity and binding profiles of isoxazolidine interactions, as well as cell-free and cell-based reporter assays to determine the functional role of isoxazolidines for regulating transcription. Structural information will additionally be used for designing isoxazolidines that exploit the plasticity of KIX to achieve unprecedented protein-like potentiation (enhanced binding) of a second binding site through allosteric regulation of the KIX domain. Finally, binding and structural analysis of isoxazolidine:KIX interactions will be compared with isoxazolidine functional activity in cellular assays.
PUBLIC HEALTH RELEVANCE: Transcription of misregulated genes is a hallmark for a variety of different disease states. Small molecules that reconstitute the function of natural activators for regulating transcription offer an exciting strategy for studying disease and gene pathways. Results from this study will be used to develop general strategies for controlling transcription using artificial transcriptional activators.
描述(由申请人提供):能够通过与转录机制相互作用来复制天然转录激活剂功能的小分子是研究基因转录的强大工具,并且正在成为对抗疾病的新策略。然而,用小分子模拟天然激活剂的功能已被证明具有挑战性。仅设计了两类小分子来上调细胞中的转录,而只有两亲性异恶唑烷在纳摩尔浓度下显示出有效的活性。一种重要的共激活剂环AMP反应元件结合(CREB)蛋白(CBP)的KIX结构域最近被确定为能够上调转录的异恶唑烷的一个细胞间靶标。与许多共激活剂相比,KIX 是一个折叠良好的蛋白质结构域,具有生物物理特征,并通过两个结合位点进行变构控制。因此,KIX 是研究结构和结合以设计能够调节转录的新功能小分子的主要目标。该提案使用 KIX 作为一个特征明确的多功能靶点,开发一个通用平台,用于设计重建天然激活剂功能的分子,并将通过三个具体目标来实现:1)天然激活剂的结构复制 2)天然激活剂的结合分析异恶唑烷:共激活剂复合物和 3) 天然激活剂的功能复制。为实现这些目标而计划的实验将使用基于荧光的结合和 2D-NMR 实验来评估异恶唑烷相互作用的结合亲和力和结合概况,以及无细胞和基于细胞的报告基因检测以确定异恶唑烷在调节中的功能作用转录。结构信息还将用于设计异恶唑烷,利用 KIX 的可塑性,通过 KIX 结构域的变构调节,实现第二个结合位点前所未有的类蛋白质增强(增强结合)。最后,异恶唑烷:KIX 相互作用的结合和结构分析将与细胞测定中的异恶唑烷功能活性进行比较。
公共卫生相关性:失调基因的转录是多种不同疾病状态的标志。重建天然激活剂调节转录功能的小分子为研究疾病和基因途径提供了令人兴奋的策略。这项研究的结果将用于开发使用人工转录激活剂控制转录的一般策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Charles Krause Pomerantz其他文献
William Charles Krause Pomerantz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Charles Krause Pomerantz', 18)}}的其他基金
Chemical Probe Development for Epigenetic Complexes Enabled by Protein-Observed 19F NMR
通过蛋白质观察的 19F NMR 开发表观遗传复合物的化学探针
- 批准号:
10796381 - 财政年份:2021
- 资助金额:
$ 5.13万 - 项目类别:
Chemical Probe Development for Epigenetic Complexes Enabled by Protein-Observed 19F NMR
通过蛋白质观察的 19F NMR 开发表观遗传复合物的化学探针
- 批准号:
10375536 - 财政年份:2021
- 资助金额:
$ 5.13万 - 项目类别:
Chemical Probe Development for Epigenetic Complexes Enabled by Protein-Observed 19F NMR
通过蛋白质观察的 19F NMR 开发表观遗传复合物的化学探针
- 批准号:
10165958 - 财政年份:2021
- 资助金额:
$ 5.13万 - 项目类别:
Chemical Probe Development for Epigenetic Complexes Enabled by Protein-Observed 19F NMR
通过蛋白质观察的 19F NMR 开发表观遗传复合物的化学探针
- 批准号:
10554380 - 财政年份:2021
- 资助金额:
$ 5.13万 - 项目类别:
2011 High-Throughput Chemistry and Chemical Biology Gordon Research Seminar
2011年高通量化学与化学生物学戈登研究研讨会
- 批准号:
8189545 - 财政年份:2011
- 资助金额:
$ 5.13万 - 项目类别:
Small Molecule Transcriptional Activator-Coactivator Interactions
小分子转录激活剂-辅激活剂相互作用
- 批准号:
7806222 - 财政年份:2010
- 资助金额:
$ 5.13万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
- 批准号:
10901007 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
Defining the architecture and activation mechanisms of SynGAP
定义SynGAP的架构和激活机制
- 批准号:
10646985 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
Exploring the Applicability of Potential Negative Allosteric Modulators at the Mu Opioid Receptor
探索 Mu 阿片受体潜在负变构调节剂的适用性
- 批准号:
10607645 - 财政年份:2023
- 资助金额:
$ 5.13万 - 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
- 批准号:
10338695 - 财政年份:2022
- 资助金额:
$ 5.13万 - 项目类别: