Modeling in vivo Protein-DNA Interactions from High-Throughput Data MP1/1

根据高通量数据 MP1/1 体内蛋白质-DNA 相互作用建模

基本信息

项目摘要

DESCRIPTION (provided by applicant): The control of gene expression is the most fundamental process in the life of any cell and it is primarily mediated (at the single gene level) by transcription factors, the DMA-binding regulatory proteins. It has been reported that the DMA target recognition in vivo sometimes differs from the in vitro-based models. Understanding the mechanisms that govern the specific DMA recognition in a cellular environment will profoundly augment our understanding of the mechanisms of transcription factor function and will also have a major impact in biomedical research. Furthermore, it becomes apparent that new motif finding algorithms need to be developed that specifically for high-throughput protein-DNA in vivo interaction data. The immediate goal of the proposed work is to develop the methodologies and tools to efficiently analyze high-throughput in vivo protein-DNA association data (like ChIP on chip) and identify the biologically important cis-regulatory elements. The more distant goal is to understand the rules that govern the interactions of transcription factors with their genomic DMA targets. The proposed activity aims, initially, to develop such a new motif finding software by expanding and testing various methods and strategies. Tests will be based on artificial and "real" data and the strengths and weaknesses of the various methods will be assessed. The best performing methods will be used to analyze existing and new ChIP on chip data, and predict the cis-regulatory motifs, which they will be subsequently confirmed with biochemical methods. Example transcription factors will be used to study the effect of particular cis-regulatory modules on gene expression with a goal of developing the methodology that will allow for complete computational models of gene regulation to be built. Finally, a database and web-interface will be developed on and around the tools and the data we will produce that ill allow for efficient data dissemination, analysis and mining. To accomplish these goals a combination of biochemical experimentation and computational algorithmic development is needed. Chromatin immunoprecipitation experiments will be coupled with promoter microarray hybridization (ChlP-on-chip) to identify possible targets for TGFbetal-induced transcription factors in primary lung cells. The data will be analyzed statistically to infer the appropriate quantitative models of the transcription factor binding. Publicly available and newly generated gene expression data will also be analyzed statistically to assess the effect of certain cis-regulatory modules in the expression of the downstream genes.
描述(由申请人提供): 基因表达的控制是任何细胞生命中最基本的过程,它主要由转录因子(DMA 结合调节蛋白)介导(在单基因水平)。据报道,体内 DMA 目标识别有时与体外模型不同。 了解细胞环境中特定 DMA 识别的控制机制将深刻增强我们对转录因子功能机制的理解,也将对生物医学研究产生重大影响。此外,很明显需要开发新的基序寻找算法,专门用于高通量蛋白质-DNA 体内相互作用数据。 拟议工作的直接目标是开发方法和工具来有效分析高通量体内蛋白质-DNA 关联数据(如芯片上的 ChIP)并识别生物学上重要的顺式调控元件。更遥远的目标是了解控制转录因子与其基因组 DMA 靶标相互作用的规则。拟议的活动最初旨在通过扩展和测试各种方法和策略来开发这样一种新的主​​题查找软件。测试将基于人工和“真实”数据,并将评估各种方法的优点和缺点。性能最佳的方法将用于分析现有和新的 ChIP 芯片数据,并预测顺式调控基序,随后将通过生化方法进行确认。示例转录因子将用于研究特定顺式调控模块对基因表达的影响,目标是开发能够建立完整的基因调控计算模型的方法。最后,将在我们将产生的工具和数据上或周围开发数据库和网络界面,以实现高效的数据传播、分析和挖掘。 为了实现这些目标,需要将生化实验和计算算法开发相结合。染色质免疫沉淀实验将与启动子微阵列杂交(ChlP-on-chip)相结合,以确定原代肺细胞中 TGFbeta 诱导的转录因子的可能靶标。对数据进行统计分析,以推断转录因子结合的适当定量模型。还将对公开的和新生成的基因表达数据进行统计分析,以评估某些顺式调控模块对下游基因表达的影响。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.
  • DOI:
    10.1371/journal.pgen.1003291
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Lino Cardenas CL;Henaoui IS;Courcot E;Roderburg C;Cauffiez C;Aubert S;Copin MC;Wallaert B;Glowacki F;Dewaeles E;Milosevic J;Maurizio J;Tedrow J;Marcet B;Lo-Guidice JM;Kaminski N;Barbry P;Luedde T;Perrais M;Mari B;Pottier N
  • 通讯作者:
    Pottier N
Biomarkers in idiopathic pulmonary fibrosis.
Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data.
  • DOI:
    10.1371/journal.pone.0005279
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Corcoran DL;Pandit KV;Gordon B;Bhattacharjee A;Kaminski N;Benos PV
  • 通讯作者:
    Benos PV
HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models.
  • DOI:
    10.1186/1471-2105-10-s1-s35
  • 发表时间:
    2009-01-30
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kadri S;Hinman V;Benos PV
  • 通讯作者:
    Benos PV
Global methylation patterns in idiopathic pulmonary fibrosis.
  • DOI:
    10.1371/journal.pone.0033770
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rabinovich EI;Kapetanaki MG;Steinfeld I;Gibson KF;Pandit KV;Yu G;Yakhini Z;Kaminski N
  • 通讯作者:
    Kaminski N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PANAGIOTIS V BENOS其他文献

PANAGIOTIS V BENOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金

COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10705838
  • 财政年份:
    2022
  • 资助金额:
    $ 46.53万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10689580
  • 财政年份:
    2022
  • 资助金额:
    $ 46.53万
  • 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
  • 批准号:
    10689574
  • 财政年份:
    2021
  • 资助金额:
    $ 46.53万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
  • 批准号:
    10206417
  • 财政年份:
    2021
  • 资助金额:
    $ 46.53万
  • 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
  • 批准号:
    10705824
  • 财政年份:
    2021
  • 资助金额:
    $ 46.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10440882
  • 财政年份:
    2019
  • 资助金额:
    $ 46.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10020437
  • 财政年份:
    2019
  • 资助金额:
    $ 46.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10473606
  • 财政年份:
    2019
  • 资助金额:
    $ 46.53万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    10188612
  • 财政年份:
    2018
  • 资助金额:
    $ 46.53万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    9753361
  • 财政年份:
    2018
  • 资助金额:
    $ 46.53万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
  • 批准号:
    62371403
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 46.53万
  • 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
  • 批准号:
    10601679
  • 财政年份:
    2023
  • 资助金额:
    $ 46.53万
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    $ 46.53万
  • 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
  • 批准号:
    10440579
  • 财政年份:
    2022
  • 资助金额:
    $ 46.53万
  • 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
  • 批准号:
    10644013
  • 财政年份:
    2022
  • 资助金额:
    $ 46.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了