Oligoclonal T Cell Expansion and Rheumatoid Arthritis

寡克隆 T 细胞扩增与类风湿关节炎

基本信息

  • 批准号:
    8080918
  • 负责人:
  • 金额:
    $ 33.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-09-30 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Rheumatoid arthritis (RA) is a quintessential autoimmune syndrome with tissue-destructive chronic inflammatory lesions attacking the synovium and a wide spectrum of extra-articular organs. Mounting evidence emphasizes that RA patients not only generate autoreactive immune responses but have broadly diminished immune competence, manifesting as increased susceptibility to infection, lymphoma, and cardiovascular disease. Over the last decade, this project has been devoted to dissecting the contribution of T cells to RA pathogenesis. Our studies have led to the discovery that patients with RA have premature aging of the immune system. Remodeling of the T cell pool, characterized by shrinkage of T cell diversity and accumulation of end-differentiated memory T cells biased toward pro-inflammatory effector functions, revealed a defect in T cell generation that imposes proliferative stress and causes accelerated T cell aging. The current application will investigate this defect in T cell homeostasis and builds on our preliminary data, demonstrating a striking impairment in the survival of na¿ve CD4 T cells from RA patients when undergoing antigen-driven clonal burst. In search of the underlying molecular defect, we have found that RA patients fail to induce sufficient telomerase during the priming response of na¿ve CD4 T cells. Here, we will investigate the mechanistic links between malfunctioning of the telomere repair apparatus and mitochondrial apoptosis pathways, rendering na¿ve CD4 T cells highly sensitive to apoptosis and undermining T cell replenishment. In Specific Aim 1 we will knock-down telomerase in na¿ve CD4 T cells from RA patients and controls and study the impact on T cell expansion after antigen-driven priming. We will repair the defective induction of hTERT in RA CD4 T cells with the intention of readjusting their apoptosis sensitivity. Specific Aim 2 is centered on molecular mechanisms mediating na¿ve CD4 T cell death with special emphasis on BCL-2 family members that function as survival proteins, pro-apoptotic executioners, or regulators. Guided by preliminary data, we will focus on the death sentinel NOXA which transmits extracellular signals controlling recovery during the CD4 priming response. Experiments have been designed to test whether the survival defect in RA T cells relates to NOXA induction and, in particular, is dependent on the p53 pathway. In Specific Aim 3, we will explore how competition for glucose affects CD4 T cell survival during priming. Specifically, we will examine how insufficient induction of the regulatory enzyme 6-phospofructo-2-kinase/fructose-2,6- biphosphatase in RA CD4 T cells reduces glycolytic flux and renders T cells apoptosis sensitive. Specific Aim 4 will connect the molecular studies on T cell homeostasis with the clinically important question as to what extent defective induction of telomerase and impaired survival of CD4 T cells compromise immunocompetence in RA patients and weaken their anti-microbial immune protection. This specific aim will make use of yearly influenza vaccinations to delineate CD4 T cell expansion and contraction in vivo in a cohort of RA patients. PUBLIC HEALTH REVELANCE. Despite the development of powerful immunosuppressive agents, we have not succeeded yet in curing patients with RA. Indeed, patients treated with effective anti-cytokine biologics are now found to have increased risk for infections and tumors. Evidence has accumulated that the immune system of RA patients has a principal defect and that the chronic inflammation destroying joints and other organs systems may signify diminished and not enhanced immune function. Specifically, patients with RA have premature aging of the immune system, easily diagnosed by the shortening of telomeres in T cells. Here, we will examine how RA patients regenerate T cells in their immune system and why their T cells fail to survive when they are driven by antigen. The studies will include vaccinating RA patients with an influenza vaccine to test whether they can build sufficient T cells to be protected from infection.
描述(由申请人提供):类风湿性关节炎(RA)是一种典型的自身免疫综合征,其组织破坏性慢性炎症病变攻击滑膜和广泛的关节外器官,越来越多的证据强调,RA 患者不仅会产生自身反应性免疫反应,而且还会产生自身免疫反应。免疫能力普遍下降,表现为对感染、淋巴瘤和心血管疾病的易感性增加。在过去的十年中,该项目一直致力于剖析 T 的贡献。我们的研究发现,RA 患者存在 T 细胞库的过早衰老,其特征是 T 细胞多样性减少和终末分化记忆 T 细胞的积累。 -炎症效应子功能,揭示了 T 细胞生成的缺陷,该缺陷会加速增殖应激并导致 T 细胞衰老。当前的应用将研究 T 细胞稳态的这种缺陷,并以我们的初步数据为基础,证明 na 的存活受到显着损害。 ¿在寻找潜在的分子缺陷时,我们发现 RA 患者在 NA 的启动反应过程中无法诱导足够的端粒酶。在这里,我们将研究端粒修复装置故障与线粒体凋亡途径之间的机制联系,以揭示端粒修复装置故障与线粒体凋亡途径之间的机制联系。 ve CD4 T 细胞对细胞凋亡高度敏感并破坏 T 细胞补充。在特定目标 1 中,我们将敲低端粒酶。我们将修复 RA CD4 T 细胞中 hTERT 的缺陷诱导,旨在重新调整其凋亡敏感性。介导 na 的分子机制ve CD4 T 细胞死亡,特别强调 BCL-2 家族成员,其功能为生存蛋白、促凋亡刽子手或调节剂。在初步数据的指导下,我们将重点关注死亡哨兵 NOXA,它在 CD4 T 细胞死亡过程中传递控制恢复的细胞外信号。实验旨在测试 RA T 细胞的存活缺陷是否与 NOXA 诱导相关,特别是是否依赖于 p53 途径,我们将在特定目标 3 中进行探索。具体而言,我们将研究 RA CD4 T 细胞中调节酶 6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶的诱导不足如何导致 T 细胞糖酵解通量。具体目标 4 将 T 细胞稳态的分子研究与临床重要问题联系起来,即端粒酶诱导缺陷程度和细胞存活受损程度。 CD4 T 细胞会损害 RA 患者的免疫能力并削弱其抗微生物免疫保护,这一具体目标将利用每年的流感疫苗接种来描绘一组 RA 患者体内 CD4 T 细胞的扩张和收缩。 公众健康启示:尽管开发了强效免疫抑制剂,但我们尚未成功治愈 RA 患者。事实上,目前发现接受有效抗细胞因子生物制剂治疗的患者感染和肿瘤的风险增加。 RA患者的免疫系统有一个主要缺陷,慢性炎症破坏关节和其他器官系统可能意味着免疫功能减弱而不是增强。具体而言,RA患者的免疫系统过早老化,很容易诊断。在这里,我们将研究 RA 患者如何在免疫系统中再生 T 细胞,以及为什么他们的 T 细胞在抗原驱动下无法存活。这些研究将包括为 RA 患者接种流感疫苗。测试他们是否能够构建足够的 T 细胞以免受感染。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cornelia M. Weyand其他文献

Commentary Ectopic Lymphoid Organogenesis A Fast Track for Autoimmunity
异位淋巴器官发生是自身免疫的快车道
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cornelia M. Weyand;P. Kurtin
  • 通讯作者:
    P. Kurtin
Pathogenese der Vaskulitis mittlerer und großer Gefäße
中小血管炎和大血管炎的病原体
Giant cell arteritis: new concepts in pathogenesis and implications for management.
巨细胞动脉炎:发病机制的新概念及其对治疗的影响。

Cornelia M. Weyand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cornelia M. Weyand', 18)}}的其他基金

T Cell Immunity in Giant Cell Arteritis
巨细胞动脉炎中的 T 细胞免疫
  • 批准号:
    10457645
  • 财政年份:
    2018
  • 资助金额:
    $ 33.45万
  • 项目类别:
T Cell Immunity in Giant Cell Arteritis
巨细胞动脉炎中的 T 细胞免疫
  • 批准号:
    9523030
  • 财政年份:
    2018
  • 资助金额:
    $ 33.45万
  • 项目类别:
Metabolic Regulation of Inflammatory Immune Responses in Cardiovascular Disease
心血管疾病炎症免疫反应的代谢调节
  • 批准号:
    9978626
  • 财政年份:
    2016
  • 资助金额:
    $ 33.45万
  • 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
  • 批准号:
    10316892
  • 财政年份:
    2014
  • 资助金额:
    $ 33.45万
  • 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
  • 批准号:
    8629407
  • 财政年份:
    2014
  • 资助金额:
    $ 33.45万
  • 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
  • 批准号:
    10655562
  • 财政年份:
    2014
  • 资助金额:
    $ 33.45万
  • 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
  • 批准号:
    10477434
  • 财政年份:
    2014
  • 资助金额:
    $ 33.45万
  • 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
  • 批准号:
    8789332
  • 财政年份:
    2014
  • 资助金额:
    $ 33.45万
  • 项目类别:
Telomere Damage Responses and Immune Aging
端粒损伤反应和免疫衰老
  • 批准号:
    8623563
  • 财政年份:
    2013
  • 资助金额:
    $ 33.45万
  • 项目类别:
DNA Repair and Mitochondrial Dysfunction in T Cell Aging
T 细胞衰老过程中的 DNA 修复和线粒体功能障碍
  • 批准号:
    10543729
  • 财政年份:
    2013
  • 资助金额:
    $ 33.45万
  • 项目类别:

相似国自然基金

Notch1/PFKFB3调控EPCs糖酵解途径参与胎盘血管形成的作用及机制研究
  • 批准号:
    81873844
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
PFKFB3调控单核/巨噬细胞能量代谢重编程在动脉粥样硬化中的作用及机制
  • 批准号:
    81700395
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
内皮细胞6-磷酸果糖-2激酶(亚型3)对肥胖和胰岛素敏感性的调控研究
  • 批准号:
    81400826
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Myeloid glycolysis in pathological ocular angiogenesis
病理性眼血管生成中的髓样糖酵解
  • 批准号:
    9982371
  • 财政年份:
    2019
  • 资助金额:
    $ 33.45万
  • 项目类别:
Myeloid glycolysis in pathological ocular angiogenesis
病理性眼血管生成中的髓样糖酵解
  • 批准号:
    10456819
  • 财政年份:
    2019
  • 资助金额:
    $ 33.45万
  • 项目类别:
Myeloid glycolysis in pathological ocular angiogenesis
病理性眼血管生成中的髓样糖酵解
  • 批准号:
    10673058
  • 财政年份:
    2019
  • 资助金额:
    $ 33.45万
  • 项目类别:
Myeloid glycolysis in pathological ocular angiogenesis
病理性眼血管生成中的髓样糖酵解
  • 批准号:
    10219266
  • 财政年份:
    2019
  • 资助金额:
    $ 33.45万
  • 项目类别:
Oligoclonal T Cell Expansion and Rheumatoid Arthritis
寡克隆 T 细胞扩增与类风湿关节炎
  • 批准号:
    8265664
  • 财政年份:
    1993
  • 资助金额:
    $ 33.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了