Molecular Imaging of Metabolic Switches in Malignant Transformations

恶性转化中代谢开关的分子成像

基本信息

  • 批准号:
    7983563
  • 负责人:
  • 金额:
    $ 42.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-03 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Transitions in metabolic pathways coincide with many important changes in cellular functions. Fundamental throughout evolution, metabolic switches are evident in yeast growth dynamics, embryonic development, mammalian cerebral responses, and immune system responses to pathogens. In addition to normal transitions in biological processes, metabolic switches are also hallmark features of malignant transformation. These include the metabolic switch from oxidative metabolism to glycolysis by cancer cells, which yields dramatic increases in glucose metabolism to accommodate a low yield energy production and changes in a number of biochemical pathways that switch to a dependence on glucose metabolism. Such changes have a profound impact on tumor cell proliferation, survival and metastasis via cell-autonomous effects. They also alter the heterotypic tumor microenvironment by the efflux of byproducts of glycolysis, such as protons and lactate, that can produce effects favorable to malignant cells but that can alter functions of, non-malignant cell populations in the surrounding environment There is growing evidence that this metabolic switch in cancer also provides for the use of glucose metabolites for anabolic purposes, such as nucleotide and fatty acid biosynthesis, required to support cell growth. However, the molecular instruction sets responsible for the metabolic switch to glycolysis, as well as the functional consequences for cancer cells and other cells within the microenvironment, in particular tumor infiltrating lymphocytes (TILs), have not been defined. This project employs new in vitro and in vivo (in mouse models) technologies to investigate the molecular commands that rearrange biochemical pathways during malignant transformations, as well as the biochemical and biological outcomes. Our group brings expertise in non-invasive metabolic imaging and integration of such technologies and principles into a microfiuidics chips. Technologies include: 1) the BetaBox for high throughput measurements of rate constants and fiuxes for glucose, nucleotide and lipid metabolism at single and multiple cell levels using a Si chip camera, embedded within a microfluidics-based cell culture array. The camera images positron emission (or any other beta particle emission; e.g., C-14, P-32) from labeled tracers. In vitro imaging using the BetaBox \N\\\ be followed by in vivo imaging using microPET. This research is facilitated by a microfluidic based radiosynthesizer designed for simplified development and producfion of PET radiolabeled molecular imaging probes. These technologies, although driven by the cancer biology of this project, generally allow for expanding in vitro and in vivo molecular imaging assays. The platforms will be exportable to the other NCI centers and have a commercialization route through Sofie Biosciences. The multidisciplinary team includes expertise in molecular and cellular biology, immunology, chemistry, radiochemistry, biomathematics, physics, and engineering. Our primary focus is to develop and use in vitro molecular assays and devices to develop novel in vivo molecular imaging diagnostic assays of the biology and biochemistry of cancer. Our oncology focus is on early malignant transformations for diagnostics and alignment of molecular imaging diagnostics with the development, selection and assessment of the molecular, nanoparticle and adoptive cell targeted therapies explored in other NSBCC projects. Our goals are: 1) Better define how metabolic switches in cancer cells drive tumor proliferation, survival and progression, and define how those switches interfere with tumor recognition by cells of the adaptive immune system. 2) Develop novel enabling technologies for high throughput in vitro and in vivo preclinical imaging measurements that enable the study of metabolic switching mechanisms employed during the malignant transformation and for discovery of new PET molecular imaging probes. 3) Develop low cost, easyto-use chips for developing and synthesizing diverse arrays of PET molecular imaging probes. These chips can give basic and clinical scientists the means to investigate the biochemistry of cancer in vivo, from mouse models to patients and provide the means to translate that knowledge into diversified in vivo diagnostics. 4) Accelerate the integration of targeted molecular imaging diagnostics with targeted molecular therapeutics to improve the care of cancer patients by aiding in selection of the right drug(s) for the right patient. By comparing gene expression data with metabolic measurements from a large set of human breast cancer cell lines, we have identified a list of candidate metabolic regulator genes that strongly correlate with the glycolytic phenotype in vitro and in vivo as determined by PET studies in patients with the glucose analog, 2-deoxy-2-[ [8] F]fluoro-D-glucose (FDG). By inducing the loss of funtion of two of these candidate metabolic regulator genes tested thus far, we were able to switch cancer cells from their malignant phenotype of glycolysis to normal oxidative metabolism in vitro. These metabolic regulators or molecular commands (and others validated to affect the switch) will be used as tools to study biological outcomes of metabolic switches in cancer, both in malignant transformations and the impact on normal cells in the tumor microenvironment.
代谢途径的转变与细胞功能的许多重要变化同时发生。作为整个进化过程的基础,代谢转换在酵母生长动力学、胚胎发育、哺乳动物大脑反应和免疫系统对病原体的反应中都很明显。除了正常的过渡之外 在生物过程中,代谢转换也是恶性转化的标志特征。其中包括癌细胞从氧化代谢到糖酵解的代谢转换,这会导致葡萄糖代谢急剧增加,以适应低产量的能量产生和许多细胞的变化。 转变为依赖葡萄糖代谢的生化途径。这些变化通过细胞自主效应对肿瘤细胞的增殖、存活和转移产生深远的影响。它们还通过糖酵解副产物(例如质子和乳酸)的流出来改变异型肿瘤微环境,这可以产生有利于恶性细胞的效应,但可以改变周围环境中非恶性细胞群的功能。越来越多的证据表明癌症中的这种代谢转换还提供了葡萄糖代谢物用于合成代谢目的的用途,例如支持细胞生长所需的核苷酸和脂肪酸生物合成。然而,负责代谢转换的分子指令集 糖酵解以及微环境中癌细胞和其他细胞(特别是肿瘤浸润淋巴细胞(TIL))的功能后果尚未明确。 该项目采用新的体外和体内(小鼠模型)技术来研究恶性转化过程中重新排列生化途径的分子命令,以及生化和生物学结果。我们的团队带来了非侵入性代谢成像方面的专业知识,并将此类技术和原理集成到微流控芯片中。技术包括:1) BetaBox,使用嵌入基于微流体的细胞培养阵列的硅芯片相机,在单细胞和多细胞水平上高通量测量葡萄糖、核苷酸和脂质代谢的速率常数和通量。 相机对标记示踪剂的正电子发射(或任何其他 β 粒子发射;例如 C-14、P-32)进行成像。使用 BetaBox 进行体外成像,然后使用 microPET 进行体内成像。基于微流体的放射合成器促进了这项研究,该合成器旨在简化 PET 的开发和生产 放射性标记的分子成像探针。这些技术虽然是由该项目的癌症生物学驱动的,但通常允许扩展体外和体内分子成像测定。这些平台将可出口到其他 NCI 中心,并通过 Sofie Biosciences 实现商业化。 多学科团队包括分子和细胞生物学、免疫学、化学、放射化学、生物数学、物理学和工程学方面的专业知识。我们的主要重点是开发和使用体外分子测定和设备来开发癌症生物学和生物化学的新型体内分子成像诊断测定。我们的肿瘤学重点是早期恶性转化的诊断以及分子影像诊断与其他 NSBCC 项目中探索的分子、纳米颗粒和过继性细胞靶向疗法的开发、选择和评估的结合。 我们的目标是:1)更好地定义癌细胞中的代谢开关如何驱动肿瘤增殖、存活和进展,并定义这些开关如何干扰适应性免疫系统细胞对肿瘤的识别。 2) 开发用于高通量体外和体内临床前成像测量的新型使能技术,使研究过程中采用的代谢转换机制成为可能 恶性转化和发现新的 PET 分子成像探针。 3)开发低成本、易于使用的芯片,用于开发和合成各种PET分子成像探针阵列。这些芯片可以为基础和临床科学家提供研究体内癌症生物化学的方法,从小鼠模型到患者,并提供将这些知识转化为多样化的体内诊断的方法。 4) 加速靶向分子成像诊断与靶向分子治疗的整合,通过帮助为合适的患者选择合适的药物来改善癌症患者的护理。 通过将基因表达数据与大量人类乳腺癌细胞系的代谢测量数据进行比较,我们确定了一系列候选代谢调节基因,这些基因与体外和体内糖酵解表型密切相关,这是通过对乳腺癌患者进行 PET 研究确定的。葡萄糖类似物,2-脱氧-2-[[8]F]氟-D-葡萄糖(FDG)。通过诱导迄今为止测试的两个候选代谢调节基因的功能丧失,我们能够在体外将癌细胞从糖酵解的恶性表型转变为正常的氧化代谢。这些代谢调节剂或分子命令(以及其他经验证可影响转换的命令)将用作研究癌症中代谢转换的生物学结果的工具,包括恶性转化和对肿瘤微环境中正常细胞的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(19)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Christofk其他文献

Heather Christofk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather Christofk', 18)}}的其他基金

Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
  • 批准号:
    9883715
  • 财政年份:
    2018
  • 资助金额:
    $ 42.51万
  • 项目类别:
Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
  • 批准号:
    10361228
  • 财政年份:
    2018
  • 资助金额:
    $ 42.51万
  • 项目类别:
Nutrient Regulation of Cancer Cell Growth
癌细胞生长的营养调节
  • 批准号:
    10607912
  • 财政年份:
    2017
  • 资助金额:
    $ 42.51万
  • 项目类别:
Nutrient regulation of cancer cell growth
癌细胞生长的营养调节
  • 批准号:
    10304890
  • 财政年份:
    2017
  • 资助金额:
    $ 42.51万
  • 项目类别:
Nutrient regulation of cancer cell growth
癌细胞生长的营养调节
  • 批准号:
    10062440
  • 财政年份:
    2017
  • 资助金额:
    $ 42.51万
  • 项目类别:
Regulation of the Warburg Effect in Cancer
癌症中瓦尔堡效应的调节
  • 批准号:
    8146230
  • 财政年份:
    2011
  • 资助金额:
    $ 42.51万
  • 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
  • 批准号:
    8545710
  • 财政年份:
  • 资助金额:
    $ 42.51万
  • 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
  • 批准号:
    8324026
  • 财政年份:
  • 资助金额:
    $ 42.51万
  • 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
  • 批准号:
    8380719
  • 财政年份:
  • 资助金额:
    $ 42.51万
  • 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
  • 批准号:
    8707989
  • 财政年份:
  • 资助金额:
    $ 42.51万
  • 项目类别:

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Infant Immunologic and Neurologic Development following Maternal Infection in Pregnancy during Recent Epidemics
近期流行病期间妊娠期感染后婴儿的免疫和神经系统发育
  • 批准号:
    10784250
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
Exposure to Mixtures of Emerging Contaminants in the Environment - Are Communities in Uganda at Health Risk?- A Case Study of Mbarara City.
接触环境中新兴污染物的混合物 - 乌干达的社区面临健康风险吗? - 姆巴拉拉市的案例研究。
  • 批准号:
    10732272
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
Somos Esenciales: Community Revitalization and Health through Latino Arts and Entrepreneurship
Somos Esenciales:通过拉丁裔艺术和创业精神实现社区复兴和健康
  • 批准号:
    10781761
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
  • 批准号:
    10727819
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
Exploring the coevolutionary potential of chikungunya virus and its Aedes mosquito vectors
探索基孔肯雅病毒及其伊蚊媒介的共同进化潜力
  • 批准号:
    10711906
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了