Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
基本信息
- 批准号:7983563
- 负责人:
- 金额:$ 42.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-03 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAffectAmericasAmino AcidsBeta ParticleBiochemicalBiochemical PathwayBiochemical ProcessBiochemical ReactionBiochemistryBiologicalBiological AssayBiological ProcessBiologyBreast Cancer CellC14 isotopeCancer BiologyCancer DiagnosticsCancer PatientCancer cell lineCarbonCaringCell Culture TechniquesCell ProliferationCell RespirationCell physiologyCellsCerebrumChemicalsChemistryClinicalCytosineDataDeoxyribonucleosidesDependenceDevelopmentDevicesDiagnosticEmbryonic DevelopmentEngineeringEnvironmentEvolutionFatty AcidsGene ExpressionGlucoseGlycolysisGoalsGrowthImageImmuneImmune systemImmunologyImplantIn VitroInstructionKineticsKnowledgeLabelMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMicrofluidicsMolecularMolecular TargetMolecular and Cellular BiologyMonitorMusNanotechnologyNeoplasm MetastasisNon-MalignantNormal CellNucleosidesNucleotidesOutcomePatient RightsPatientsPharmaceutical PreparationsPhenotypePhysicsPopulationPositronPositron-Emission TomographyProductionProtonsRadiochemistryRadioisotopesRadiolabeledRegulator GenesResearchResolutionRouteScientistSourceStagingSupporting CellSystemT-LymphocyteTechnologyTestingTherapeuticTracerTranslatingTumor-Infiltrating LymphocytesUniversitiesYeastsbasebiomathematicscancer cellcell growthcommercializationcostdesignfatty acid biosynthesisflexibilityglucose analogglucose metabolismhigh throughput technologyhospital bedimaging probeimprovedin vivolipid metabolismmalignant phenotypemetabolic abnormality assessmentmolecular imagingmouse modelmultidisciplinarynanoparticleneoplastic cellnoveloncologyoperationpathogenpre-clinicalprototyperadiotracerreaction rateresponsetherapeutic targettooltumortumorigenesis
项目摘要
Transitions in metabolic pathways coincide with many important changes in cellular functions. Fundamental throughout evolution, metabolic switches are evident in yeast growth dynamics, embryonic development, mammalian cerebral responses, and immune system responses to pathogens. In addition to normal transitions
in biological processes, metabolic switches are also hallmark features of malignant transformation. These include the metabolic switch from oxidative metabolism to glycolysis by cancer cells, which yields dramatic increases in glucose metabolism to accommodate a low yield energy production and changes in a number of
biochemical pathways that switch to a dependence on glucose metabolism. Such changes have a profound impact on tumor cell proliferation, survival and metastasis via cell-autonomous effects. They also alter the heterotypic tumor microenvironment by the efflux of byproducts of glycolysis, such as protons and lactate, that can produce effects favorable to malignant cells but that can alter functions of, non-malignant cell populations in the surrounding environment There is growing evidence that this metabolic switch in cancer also provides for the use of glucose metabolites for anabolic purposes, such as nucleotide and fatty acid biosynthesis, required to support cell growth. However, the molecular instruction sets responsible for the metabolic switch to
glycolysis, as well as the functional consequences for cancer cells and other cells within the microenvironment, in particular tumor infiltrating lymphocytes (TILs), have not been defined.
This project employs new in vitro and in vivo (in mouse models) technologies to investigate the molecular commands that rearrange biochemical pathways during malignant transformations, as well as the biochemical and biological outcomes. Our group brings expertise in non-invasive metabolic imaging and integration of such technologies and principles into a microfiuidics chips. Technologies include: 1) the BetaBox for high throughput measurements of rate constants and fiuxes for glucose, nucleotide and lipid metabolism at single and multiple cell levels using a Si chip camera, embedded within a microfluidics-based cell culture array.
The camera images positron emission (or any other beta particle emission; e.g., C-14, P-32) from labeled tracers. In vitro imaging using the BetaBox \N\\\ be followed by in vivo imaging using microPET. This research is facilitated by a microfluidic based radiosynthesizer designed for simplified development and producfion of PET
radiolabeled molecular imaging probes. These technologies, although driven by the cancer biology of this project, generally allow for expanding in vitro and in vivo molecular imaging assays. The platforms will be exportable to the other NCI centers and have a commercialization route through Sofie Biosciences.
The multidisciplinary team includes expertise in molecular and cellular biology, immunology, chemistry, radiochemistry, biomathematics, physics, and engineering. Our primary focus is to develop and use in vitro molecular assays and devices to develop novel in vivo molecular imaging diagnostic assays of the biology and biochemistry of cancer. Our oncology focus is on early malignant transformations for diagnostics and alignment of molecular imaging diagnostics with the development, selection and assessment of the molecular, nanoparticle and adoptive cell targeted therapies explored in other NSBCC projects.
Our goals are: 1) Better define how metabolic switches in cancer cells drive tumor proliferation, survival and progression, and define how those switches interfere with tumor recognition by cells of the adaptive immune system. 2) Develop novel enabling technologies for high throughput in vitro and in vivo preclinical imaging measurements that enable the study of metabolic switching mechanisms employed during the
malignant transformation and for discovery of new PET molecular imaging probes. 3) Develop low cost, easyto-use chips for developing and synthesizing diverse arrays of PET molecular imaging probes. These chips can give basic and clinical scientists the means to investigate the biochemistry of cancer in vivo, from mouse models to patients and provide the means to translate that knowledge into diversified in vivo diagnostics. 4)
Accelerate the integration of targeted molecular imaging diagnostics with targeted molecular therapeutics to improve the care of cancer patients by aiding in selection of the right drug(s) for the right patient.
By comparing gene expression data with metabolic measurements from a large set of human breast cancer cell lines, we have identified a list of candidate metabolic regulator genes that strongly correlate with the glycolytic phenotype in vitro and in vivo as determined by PET studies in patients with the glucose analog, 2-deoxy-2-[ [8] F]fluoro-D-glucose (FDG). By inducing the loss of funtion of two of these candidate metabolic regulator genes tested thus far, we were able to switch cancer cells from their malignant phenotype of glycolysis to normal oxidative metabolism in vitro. These metabolic regulators or molecular commands (and others validated to affect the switch) will be used as tools to study biological outcomes of metabolic switches in cancer, both in malignant transformations and the impact on normal cells in the tumor microenvironment.
代谢途径中的过渡与细胞功能的许多重要变化一致。在整个进化过程中,代谢开关在酵母生长动力学,胚胎发育,哺乳动物大脑反应以及对病原体的免疫系统反应中很明显。除了正常过渡
在生物过程中,代谢开关也是恶性转化的标志性特征。其中包括从氧化代谢转变为癌细胞糖酵解的代谢转变,从而产生葡萄糖代谢的急剧增加,以适应低产量的能量产生和许多变化
生化途径转变为依赖葡萄糖代谢的途径。这种变化通过细胞自主影响对肿瘤细胞增殖,存活和转移产生深远的影响。他们还通过糖酵解的副产物的外向(例如质子和乳酸)来改变异性肿瘤微环境,这些副产物可以产生有利于恶性细胞的作用,但可以改变周围环境中非恶性细胞种群的功能,这些证据越来越多地证明了这种越来越多的证据表明,癌症中的代谢含量既可以构成粉状的污染,又可以构成粉状的粉状,而这些蛋白质的含量是酸含量的,而粉状的含量是构成的。生物合成,需要支持细胞生长。但是,分子指令集负责代谢开关
尚未定义糖酵解以及微环境中癌细胞和其他细胞的功能后果,特别是肿瘤浸润淋巴细胞(TILS)。
该项目采用新的体外和体内(在小鼠模型中)技术来研究在恶性转化期间重新排列生化途径以及生化和生物学结果的分子命令。我们的小组将这些技术和原理的非侵入性代谢成像以及整合到小膜片芯片中的专业知识。技术包括:1)使用SI CHIP摄像机在单个和多个细胞水平下用于葡萄糖,核苷酸和脂质代谢的高吞吐量测量的BETABOX,嵌入了基于微流体的细胞培养阵列中。
从标记的示踪剂中,相机图像正电子发射(或任何其他β粒子发射;例如,C-14,P-32)。使用betabox \ n \\\进行体外成像,然后使用MicroPET进行体内成像。这项研究是由旨在简化PET开发和生产的基于微流体的放射性合成器来促进的。
放射标记的分子成像探针。这些技术虽然是由该项目的癌症生物学驱动的,但通常可以扩大体外和体内分子成像测定法。这些平台将可以出口到其他NCI中心,并通过Sofie Biosciences具有商业化路线。
多学科团队包括分子和细胞生物学,免疫学,化学,放射化学,生物学,物理学和工程学方面的专业知识。我们的主要重点是开发和使用体外分子测定和设备,以开发癌症生物学和生物化学的体内分子成像诊断测定。我们的肿瘤学重点是早期的恶性转化,用于诊断和分子成像诊断的比对,以及在其他NSBCC项目中探索的分子,纳米粒子和养细胞靶向疗法的开发,选择和评估。
我们的目标是:1)更好地定义癌细胞中的代谢转换如何驱动肿瘤增殖,存活和进展,并定义这些切换如何干扰自适应免疫系统细胞识别肿瘤。 2)开发新型的促成技术,用于体外和体内临床前成像测量的高通量,以研究在该过程中采用的代谢开关机制
恶性转化和发现新的PET分子成像探针。 3)开发低成本,易于使用的芯片,用于开发和合成各种宠物分子成像探针的多样化阵列。这些芯片可以为基本和临床科学家提供研究体内癌症生物化学的方法,从小鼠模型到患者,并提供了将知识转化为多样化的体内诊断的手段。 4)
通过有助于选择合适的患者的合适药物,加快靶向分子成像诊断与靶向分子疗法的整合,以改善癌症患者的护理。
通过将基因表达数据与来自大量人类乳腺癌细胞系的代谢测量进行比较,我们确定了一系列候选代谢调节基因列表,这些基因与葡萄糖,2-脱氧-2-- [8] F fluoro-d-d-f-luccose(F-d-gluccose flucose in Betto consects and Vivo都与糖酵解表型密切相关。通过诱导迄今为止测试的这两个候选代谢调节基因的功能丧失,我们能够将癌细胞从糖酵解的恶性表型转换为体外的正常氧化代谢。这些代谢调节剂或分子命令(以及经过验证以影响开关的其他命令)将用作研究癌症代谢转换的生物学结果的工具,无论是恶性转化还是对肿瘤微环境中正常细胞的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(19)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Christofk其他文献
Heather Christofk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Christofk', 18)}}的其他基金
Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
- 批准号:
9883715 - 财政年份:2018
- 资助金额:
$ 42.51万 - 项目类别:
Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
- 批准号:
10361228 - 财政年份:2018
- 资助金额:
$ 42.51万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8545710 - 财政年份:
- 资助金额:
$ 42.51万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8324026 - 财政年份:
- 资助金额:
$ 42.51万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8380719 - 财政年份:
- 资助金额:
$ 42.51万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8707989 - 财政年份:
- 资助金额:
$ 42.51万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Infant Immunologic and Neurologic Development following Maternal Infection in Pregnancy during Recent Epidemics
近期流行病期间妊娠期感染后婴儿的免疫和神经系统发育
- 批准号:
10784250 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别:
Exposure to Mixtures of Emerging Contaminants in the Environment - Are Communities in Uganda at Health Risk?- A Case Study of Mbarara City.
接触环境中新兴污染物的混合物 - 乌干达的社区面临健康风险吗? - 姆巴拉拉市的案例研究。
- 批准号:
10732272 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别:
Somos Esenciales: Community Revitalization and Health through Latino Arts and Entrepreneurship
Somos Esenciales:通过拉丁裔艺术和创业精神实现社区复兴和健康
- 批准号:
10781761 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别:
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
- 批准号:
10727819 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别:
Exploring the coevolutionary potential of chikungunya virus and its Aedes mosquito vectors
探索基孔肯雅病毒及其伊蚊媒介的共同进化潜力
- 批准号:
10711906 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别: