Advancing Instrumental Variable Methods in Comparative Effectiveness Research
推进比较有效性研究中的工具变量方法
基本信息
- 批准号:8036881
- 负责人:
- 金额:$ 1.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-28 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Comparative effectiveness research (CER) primarily involves estimation of causal effects of alternative treatments on outcomes. To this end, observational databases are a promising source of information on patient-level treatments and outcomes. However, observational data analyses are prone to selection biases or confounding by indication, which arise due to the differences in levels of observed and unobserved risk factors across patients receiving different treatments, and which complicate inference on causal effects of treatments. Instrumental variable (IV) methods are one of the most powerful methods that can address these challenges and help estimate causal effects from such data, yet these methods are underutilized for CER. The goal of this application is to increase the appropriate utilization of instrumental variables methods by overcoming three important barriers to adoption of these powerful methods for CER. Appropriate use of IV methods for CER hinges on selecting good instruments and appropriate estimation. A good instrument must 1) induce substantial variation in treatment choices (i.e. be "strong") but 2) not affect outcomes except through treatment choices (i.e. the "exclusion restriction"). While the consequences of using weak instruments have been investigated, the consequences of violating the exclusion restriction are not well understood. Even under the traditional assumption of a homogenous treatment effect, several new IV approaches are being developed. Knowing which method is appropriate for any particular application remains challenging. The default has been to use two-stage least squares, but many situations common to CER require alternative approaches such as near-far matching or two-stage residual inclusion. This application aims to address these challenges with applying instrumental variables analysis with a goal of providing applied practitioners of CER with appropriate guidance. Results of IV analyses may be generalized to the wrong subpopulations if treatment effects are heterogeneous as these effects become dependent on the analyst's choice of IV(s) and are difficult to interpret for clinical and policy purposes. We will also develop novel IV approaches that address treatment effect heterogeneity and generate interpretable results for CER. Many current applications of CER do not take full advantage of recent IV methodological advances, due to unavailability of readily implementable software or statistical code, resulting in delays in the translation of the science of IV analysis to practice. Therefore, we will develop relevant statistical code to help practitioners implement these methods using common statistical software packages and illustrate the methods through empirical examples in prostate cancer and cardiovascular disease.
PUBLIC HEALTH RELEVANCE: Comparative effectiveness research (CER) primarily involves estimation of causal effects of alternative treatments on outcomes. To this end, observational databases are a promising source of information on patient-level treatments and outcomes. However, observational data analyses are prone to selection biases or confounding by indication, which arise due to the differences in levels of observed and unobserved risk factors across patients receiving different treatments, and which complicate inference on causal effects of treatments. Instrumental variable (IV) methods are one of the most powerful methods that can address these challenges and help estimate causal effects from such data, yet these methods are underutilized for CER. The goal of this application is to increase the appropriate utilization of IV methods by overcoming three important barriers to adoption of these powerful methods for CER.
描述(由申请人提供):比较有效性研究(CER)主要涉及估算替代治疗对结局的因果影响。为此,观察数据库是有关患者水平治疗和结果的有前途的信息来源。但是,观察数据分析容易出现选择偏见或通过适应症混淆,这是由于接受不同治疗的患者观察到的和未观察到的危险因素的差异,这会使治疗的因果效应变得复杂。仪器变量(IV)方法是可以解决这些挑战并有助于估算此类数据的因果效应的最强大方法之一,但是这些方法对CER的利用不足。该应用的目的是通过克服采用这些强大的CER方法的三个重要障碍来增加对仪器变量方法的适当利用。 适当使用IV方法用于选择良好仪器和适当估计的方法。一个好的仪器必须1)引起治疗选择的实质变化(即“强”),但2)除了通过治疗选择(即“排除限制”)之外,不影响结果。尽管已经研究了使用弱工具的后果,但违反排除限制的后果尚未得到充分理解。即使在传统的同质治疗效果的假设下,也开发了几种新的IV方法。知道哪种方法适合任何特定应用程序仍然具有挑战性。默认值是使用两个阶段的最小二乘,但是CER常见的许多情况都需要替代方法,例如近乎匹配的匹配或两个阶段的残留包含。该应用程序旨在通过应用工具变量分析来解决这些挑战,目的是为CER的应用从业者提供适当的指导。如果治疗效果是异质的,则静脉分析的结果可能会推广到错误的亚群,因为这些效果依赖于分析师的IV选择,并且很难出于临床和政策目的来解释。我们还将开发出新的IV方法,以解决治疗效应异质性并为CER产生可解释的结果。由于无法使用易于实现的软件或统计代码,因此CER的许多当前应用并未充分利用近期的IV方法学进步,这导致了IV科学分析对实践的延迟。因此,我们将制定相关的统计代码,以帮助从业者使用常见的统计软件包实施这些方法,并通过前列腺癌和心血管疾病的经验例子说明这些方法。
公共卫生相关性:比较有效性研究(CER)主要涉及估算替代治疗对结果的因果影响。为此,观察数据库是有关患者水平治疗和结果的有前途的信息来源。但是,观察数据分析容易出现选择偏见或通过适应症混淆,这是由于接受不同治疗的患者观察到的和未观察到的危险因素的差异,这会使治疗的因果效应变得复杂。仪器变量(IV)方法是可以解决这些挑战并有助于估算此类数据的因果效应的最强大方法之一,但是这些方法对CER的利用不足。该应用的目的是通过克服采用这些强大方法的CER的三个重要障碍来增加对IV方法的适当利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
ANIRBAN BASU的其他基金
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:97689689768968
- 财政年份:2017
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Value of Information Methods for NHLBI Trials
NHLBI 试验的信息方法的价值
- 批准号:90507029050702
- 财政年份:2015
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:87090468709046
- 财政年份:2014
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:90235099023509
- 财政年份:2014
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:82312538231253
- 财政年份:2012
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:84469208446920
- 财政年份:2012
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:80282168028216
- 财政年份:2011
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:84445298444529
- 财政年份:2011
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:83055108305510
- 财政年份:2011
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
A Comprehensive Probabilistic-Micro-Simulation Model to Assess Cost-Effectiveness
用于评估成本效益的综合概率微观模拟模型
- 批准号:80357268035726
- 财政年份:2010
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:1082667310826673
- 财政年份:2024
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:1075293010752930
- 财政年份:2024
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
- 批准号:1063668110636681
- 财政年份:2023
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Efficacy and implementation of exercise-based smoking cessation treatment for adults with high anxiety sensitivity
以运动为基础的戒烟治疗对高焦虑敏感性成人的疗效和实施
- 批准号:1066076710660767
- 财政年份:2023
- 资助金额:$ 1.95万$ 1.95万
- 项目类别:
Team Support to Improve Glycemic Control Using CGM in Diverse Populations (TEAM CGM)
团队支持在不同人群中使用 CGM 改善血糖控制 (TEAM CGM)
- 批准号:1065972110659721
- 财政年份:2023
- 资助金额:$ 1.95万$ 1.95万
- 项目类别: