A Nanofluidic Nanoplasmonic Platform for Multiplexing Detection of Cancer Biomark
用于癌症生物标志物多重检测的纳流体纳米等离子体平台
基本信息
- 批准号:8003191
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2011-08-28
- 项目状态:已结题
- 来源:
- 关键词:AreaArtsBasic ScienceBenchmarkingBindingBiochemicalBiologicalBiological AssayBiological MarkersBiological MonitoringBiomedical ResearchBody FluidsCancer DetectionClinicClinicalCouplingDetectionDevelopmentDevicesDiagnosticDiseaseDrug DesignEarly DiagnosisElementsEvaluationEventFDA approvedFilmFluorescenceGoldGovernmentHealthcareIndustryLabelLiquid substanceMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMedicalMetalsMethodsMicrofluidic MicrochipsMicrofluidicsMiniaturizationNanostructuresNatureNoiseOpticsPersonsPharmaceutical PreparationsPharmacologic SubstancePhasePhysicsPhysiologicalProcessProstate-Specific AntigenProteinsProteomicsProtocols documentationReagentRefractive IndicesResearchResidual stateSalivaSamplingScreening for cancerScreening procedureSerumShapesSignal TransductionSilverSputumStructureStudy SectionSurfaceSurface Plasmon ResonanceSystemTechnologyTestingThickTimeTranslationsUnited States National Aeronautics and Space AdministrationUniversitiesUrineValidationWidthanalytical toolbasecancer diagnosisclinical Diagnosisclinical applicationcostdesigndrug discoveryimprovedlight intensitymeetingsmicro-total analysis systemnanonanochannelnanofluidicnanostructurednext generationnovelnovel strategiesphase 1 studyplasmonicsprognosticprotein transportprototypepublic health relevancesealself diagnosissensorsimulationsuccesstooltransmission process
项目摘要
DESCRIPTION (provided by applicant): This project aims to develop a novel nanofluidic-nanoplasmonic platform to realize multiplexed monitoring of biological binding processes, specifically for detection of cancer biomarkers in bio-fluids. In contrast to current large-sized, cumbersome surface plasmon resonance (SPR) sensing technology, the proposed device is comprised of a multilayer nanostructured array that combines the functions of nanofluidics for effective reagent transport and nanoplasmonics for sensing, concurrently. The array is designed in such a way as to permit significantly enhanced Extraordinary Optical Transmission (EOT) with a primary peak in the NIR range (700- 1200 nm), with the transmission and spectra being determined by the surface plasmons (SP) manipulated in the embedded metal film. The array structure readily interfaces with microfluidic channels, making it amenable to highly parallel throughput screening in a lab-on-chip device. The new platform offers greater throughput compatibility, 5-10X enhanced sensitivity of refractive index changes compared to current grating SPR sensor, improved efficacy of analyte transport, significantly increased EOT intensity with NIR range spectra for favorable signal-to-noise detection, lower cost, and rapid turnaround times - benefiting early detection of biomarkers and other applications in healthcare and biomedical research. The Phase I study seeks to develop (design, fabricate, and test) a prototype of the nano-fluidic-plasmonics array integrated in a microfluidic channel, to adapt protocols for nano-confined flow-through transport validation and to culminate with a clear demonstration of improved plasmonic sensing of biomarkers. The nanostructure arrays and device optimization as well as integration with sample handling microfluidics for detecting multiple biomarkers in real biofluids are planned for Phase II. A multi-disciplinary partnership with expertise in SPR sensors and BioMEMS/nanofluidics (CFDRC), nanoplasmonics and nanophotonics (University of Pittsburgh), and disease proteomics (diagnostic/prognostic biomarkers) (UCLA) has been formed.
PUBLIC HEALTH RELEVANCE: A clear need exists for portable, label-free, high throughput analytical tools that are suited for early detection of cancer biomarkers and related biological species in bio-fluids at trace amount levels, not only in medical applications (clinical or self-diagnosis) but also in biomedical research (proteomics, drug design and evaluation). The overall objective of this project is to develop a nano-fluidic-plasmonics-based sensing platform which can be readily integrated with microfluidics devices, and enable in-parallel transmission SPR sensing technology and lab-on-chip technology (sample separation, mixing, dilution, etc) for developing next generation nanoplasmonics-based bioanalytical tools that are capable of multiplexing differentiation of biomarkers as well as high parallel throughput studies.
描述(由申请人提供):该项目旨在开发一种新型的纳米流体纳米质质平台,以实现对生物结合过程的多重监测,特别是用于检测生物流体中的癌症生物标志物。与当前的大型,繁琐的表面等离子体共振(SPR)传感技术相反,所提出的设备由多层纳米结构阵列组成,该阵列结合了纳米流通液的功能,用于有效的试剂传输和纳米浆料,以同时感测。该阵列的设计方式是可以显着增强非凡的光学传输(EOT),其主要峰在NIR范围内(700-1200 nm),其透射率和光谱由在嵌入式金属膜中操纵的表面等离子体(SP)确定。该阵列结构很容易与微流体通道接口,从而可以在实验室片上的芯片设备中进行高度平行的吞吐量筛选。 The new platform offers greater throughput compatibility, 5-10X enhanced sensitivity of refractive index changes compared to current grating SPR sensor, improved efficacy of analyte transport, significantly increased EOT intensity with NIR range spectra for favorable signal-to-noise detection, lower cost, and rapid turnaround times - benefiting early detection of biomarkers and other applications in healthcare and biomedical research.第一阶段的研究旨在开发(设计,制造和测试)在微流体通道中集成的纳米 - 富集式 - 泛质阵列的原型,以适应纳米限制的流通传输验证的协议,并清楚地证明了对生物标志物的血清素水平传感的明确证明。纳米结构阵列和设备优化以及与样品处理微流体的集成,用于检测实际生物流体中多种生物标志物的样品。与SPR传感器/纳米流体技术(CFDRC),纳米浆果和纳米光子学(匹兹堡大学)(匹兹堡大学)以及疾病蛋白质组学(诊断/预后生物标志物)(UCLA)的多学科合作伙伴关系。
公共卫生相关性:存在明确的需求,需要便携式,无标签,高通量分析工具,这些工具适用于以痕量水平(临床或自我诊断)的生物融合物中的癌症生物标志物和相关生物物种的早期检测,还适用于生物医学研究(蛋白质组学,药物设计和评估)。该项目的总体目的是开发基于纳米流体 - 气质的传感平台,该平台可以很容易地与微流体设备整合在一起,并启用并行的传输传输SPR感应技术和芯片上的芯片技术(样品分离,混合,稀释,稀释等),以开发基于下一代NanoPlasmonics Asportive and Mulldelive and Mulldix and squants y Mulldelive and Multibles的工具,该工具与多样化的工具相互作用。研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianjun Wei其他文献
Jianjun Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianjun Wei', 18)}}的其他基金
Near-Infrared Nanopolymer Agents for Real-Time, In Vivo Imaging of Tumor Margins
用于肿瘤边缘实时体内成像的近红外纳米聚合物试剂
- 批准号:
7482651 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
相似国自然基金
青藏高原“中更新世”岩面艺术的热释光年代学研究
- 批准号:42371161
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
艺术品高光谱成像数字典藏与光谱颜色再现研究
- 批准号:62275025
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
科学与艺术的邂逅:艺术对科技创新的启示
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
基于音色与颜色关联的艺术视听感知计算方法研究
- 批准号:62276240
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
为无价之物定价:基于大数据方法的艺术品市场定价机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
University of Florida Health Cancer Center Support Grant
佛罗里达大学健康癌症中心支持补助金
- 批准号:
10625750 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
New Mexico Integrative Science Program Incorporating Research in Environmental Sciences (NM-INSPIRES)
新墨西哥州综合科学计划纳入环境科学研究(NM-INSPIRES)
- 批准号:
10393297 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Quantitative Single Cell Mass Spectrometry for Small Molecules with Unprecedented Sensitivity
具有前所未有的灵敏度的小分子定量单细胞质谱分析
- 批准号:
10431204 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别: