ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
基本信息
- 批准号:7959652
- 负责人:
- 金额:$ 23.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptive TransferAmericanAnatomyBiologyBlood VesselsBody partBuild-itCellsCessation of lifeChairpersonComputer Retrieval of Information on Scientific Projects DatabaseDevicesDoseFGF2 geneFundingGene SilencingGene TransferGenesGrantHemoglobinHospitalsInstitutionIschemiaLengthLiposomesLocationMeasuresMediatingMentorsMethodsMissionModelingOperative Surgical ProceduresPerfusionPlasmidsPlastic SurgeonPlatelet-Derived Growth FactorPopulationProteinsPublishingReconstructive Surgical ProceduresResearchResearch PersonnelResourcesSkinSmall Interfering RNASocietiesSourceStem cellsSurgical FlapsTechniquesTechnologyTestingTimeTissue EngineeringTissue SurvivalTissue ViabilityTissuesTrainingTransgenesUnited States National Institutes of HealthUniversitiesVascular Endothelial Growth FactorsVascular blood supplyViralWorkWound Healingadeno-associated viral vectorclinically relevantdesigngene therapyimprovedinjury and repairnovelnovel strategiesstatisticswound
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
There has been no change in the scope of this project.
This project will develop a novel application for a recent technique within gene therapy in the field of reconstructive surgery. We propose to use adeno-associated viral vectors designed to cause infected cells to elaborate potent blood supply-building proteins, namely VEGF, PDGF, and FGF2. This enhanced vascular network appears to rescue ischemic tissue from death, allowing "flaps" (tissue transferred from one anatomic location to another for the purpose of closing a wound or reconstructing parts of the body) to be constructed of longer length, greater size, or greater reliability. Statistics compiled by the American Society of Plastic Surgeons (www.plasticsurgery.org) tracked over 5.2 million reconstructive surgeries in the US last year alone. In addition, this project is germane to the overall mission of bettering wound healing, and may be applicable to any situation of tissue ischemia.
It builds upon earlier, published work of the applicant (P Liu), who, though currently Chairman of Surgery at Roger Williams Hospital, Providence, RI, has never been the recipient of competitive Federal funding except a T32 training grant. It is not mentored, but will rely on the critical input from collaborators at Brown University and Roger Williams skilled in those techniques new to the applicant. The specific hypothesis tested is: Engineering tissue with AAV-delivered angiogenic genes can improve survival of ischemic flaps derived from that tissue via recruitment of endothelial progenitor cells. In addition to testing the effects of each of the transgenes, our approach will take advantage of the greater efficiency of viral-mediated gene transfer to assess the combination of VEGF + FGF2, which, when delivered via liposome in plasmid form, was more effective than single gene therapy delivered the same way. We propose the following specific aims:
1). Maximize tissue survival in a flap model by optimizing the timing and dosing of angiogenic gene transfers using AAV vectors, and assess the effects of combining VEGF and FGF2 gene therapy.
2). Develop a mechanism of action to account for enhanced tissue survival.
We expect the approach to be both efficacious and clinically relevant. Addressing Aim 2 will help answer a controversial issue in vascular biology, namely, where does the new blood supply in injury repair come from? We will utilize siRNA methods of gene silencing to help get at that answer, as well as localization technology (IVIS) and adoptive transfer of endothelial progenitor cell-enriched populations into the ischemic tissue. Lastly, a new portable spectroscopic device, the ViOptix probe, measuring spectral shifts in the near infrared spectrum of oxygenated hemoglobin as a function of perfusion, will help determine real time tissue viability.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
该项目的范围没有变化。
该项目将为基因治疗的最新技术在重建手术领域开发一种新的应用。我们建议使用腺相关病毒载体,旨在使受感染的细胞产生有效的血液供应构建蛋白,即 VEGF、PDGF 和 FGF2。这种增强的血管网络似乎可以挽救缺血组织免于死亡,从而允许“皮瓣”(为了闭合伤口或重建身体部位而从一个解剖位置转移到另一个解剖位置的组织)被构造成更长、更大的尺寸或更高的可靠性。美国整形外科医生协会 (www. Plasticsurgery.org) 编制的统计数据显示,仅去年一年,美国就进行了超过 520 万例重建手术。此外,该项目与改善伤口愈合的总体使命密切相关,并且可能适用于任何组织缺血的情况。
它建立在申请人 (P Liu) 早期发表的作品的基础上,尽管申请人目前是罗得岛州普罗维登斯罗杰威廉姆斯医院的外科主任,但除了 T32 培训补助金之外,从未获得过竞争性联邦资金的接受者。它没有受到指导,但将依赖于布朗大学的合作者和罗杰·威廉姆斯(Roger Williams)的关键投入,这些合作者精通对申请人来说是新的技术。测试的具体假设是:用 AAV 传递的血管生成基因改造组织可以通过招募内皮祖细胞来提高源自该组织的缺血性皮瓣的存活率。除了测试每个转基因的效果之外,我们的方法还将利用病毒介导的基因转移的更高效率来评估 VEGF + FGF2 的组合,当通过质粒形式的脂质体递送时,该组合比单基因疗法以同样的方式进行。我们提出以下具体目标:
1)。通过使用 AAV 载体优化血管生成基因转移的时间和剂量,最大限度地提高皮瓣模型中的组织存活率,并评估 VEGF 和 FGF2 基因治疗相结合的效果。
2)。开发一种作用机制来提高组织存活率。
我们期望该方法既有效又具有临床相关性。 解决目标2将有助于回答血管生物学中一个有争议的问题,即损伤修复中的新血液供应从何而来?我们将利用基因沉默的 siRNA 方法以及定位技术 (IVIS) 和将富含内皮祖细胞的群体过继转移到缺血组织中来帮助找到答案。最后,一种新型便携式光谱设备 ViOptix 探头可测量含氧血红蛋白近红外光谱中随灌注变化的光谱变化,这将有助于确定实时组织活力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Liu其他文献
Paul Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Liu', 18)}}的其他基金
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
- 批准号:
8360042 - 财政年份:2011
- 资助金额:
$ 23.92万 - 项目类别:
ISCHEMIC SKIN FLAP SURVIVAL USING AAV-FGF2 AND AAV-VEGF 165
使用 AAV-FGF2 和 AAV-VEGF 观察缺血性皮瓣的存活情况 165
- 批准号:
8167644 - 财政年份:2010
- 资助金额:
$ 23.92万 - 项目类别:
Functional and translational studies of RUNX1 and CBFB in hematopoiesis
RUNX1和CBFB在造血中的功能和转化研究
- 批准号:
8750660 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
Mechanistic and translational studies of CBF leukemia
CBF白血病的机制和转化研究
- 批准号:
9152701 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
- 批准号:
8349971 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
Genetic Analysis of Attention Deficit Hyperactivity Disorder
注意力缺陷多动障碍的遗传分析
- 批准号:
10274163 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
MOLECULAR PATHOGENESIS OF CHROMOSOME 16 INVERSION IN HUMAN LEUKEMIA
人类白血病 16 号染色体倒转的分子发病机制
- 批准号:
8565516 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
- 批准号:
10700696 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
Clinical and translational studies of RUNX1 and FPDMM
RUNX1 和 FPDMM 的临床和转化研究
- 批准号:
10910743 - 财政年份:
- 资助金额:
$ 23.92万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Role of myeloid-derived suppressor cells in local and systemic immunosuppression in glioblastoma
髓源性抑制细胞在胶质母细胞瘤局部和全身免疫抑制中的作用
- 批准号:
10746880 - 财政年份:2023
- 资助金额:
$ 23.92万 - 项目类别:
Role of myeloid-derived suppressor cells in local and systemic immunosuppression in glioblastoma
髓源性抑制细胞在胶质母细胞瘤局部和全身免疫抑制中的作用
- 批准号:
10323691 - 财政年份:2021
- 资助金额:
$ 23.92万 - 项目类别:
Development of a tumor-activated IL12 prodrug to treat solid tumors
开发肿瘤激活的 IL12 前药来治疗实体瘤
- 批准号:
10374765 - 财政年份:2021
- 资助金额:
$ 23.92万 - 项目类别:
MCEMP1 is an adaptor for KIT receptor for mast cell proliferation
MCEMP1 是用于肥大细胞增殖的 KIT 受体的接头
- 批准号:
10214740 - 财政年份:2021
- 资助金额:
$ 23.92万 - 项目类别:
Development of a tumor-activated IL12 prodrug to treat solid tumors
开发肿瘤激活的 IL12 前药来治疗实体瘤
- 批准号:
10152759 - 财政年份:2021
- 资助金额:
$ 23.92万 - 项目类别: