Longitudinal and Cross-sectional White Matter Analysis of Alzheimer's Disease

阿尔茨海默病的纵向和横截面白质分析

基本信息

  • 批准号:
    7845567
  • 负责人:
  • 金额:
    $ 16.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall hypothesis of this application is that white matter (WM), especially the limbic tracts, is one of the primary targets of Alzheimer's disease (AD) and diffusion tensor imaging (DTI) can sensitively detect changes in these WM tracts. The goal is to develop quantitative DTI image analysis techniques to detect WM abnormalities in AD. AD is the most common cause of dementia. Although the primary pathology is cortical neuronal cell degeneration, increasing evidence indicates a preponderance of WM pathology over gray matter pathology. Moreover, WM alterations could be an indirect indicator of nerve cell loss, since the volume of a nerve cell is much smaller than its myelinated fiber. Therefore, WM seems to be a good focus for both early diagnosis and monitoring of disease progression. MRI is a non-invasive technique that is widely available in the United States, which has great potential as an imaging biomarker. However, conventional MRI cannot provide contrasts to differentiate various WM structures and has low sensitivity and specificity for detecting changes in specific WM structures. DTI is a method that has the potential to detect abnormalities in specific white matter structures. Using this method can increase the sensitivity and specificity to detect WM abnormalities, compared to conventional MRI analysis. However, quantification techniques for DTI data have not been well-developed and it has been difficult to fully exploit the WM anatomical information revealed by DTI. This application is based on two technical innovations we have developed: one is a white matter brain atlas (JHU-DTI-MNI) in stereotaxic coordinates that contains detailed white matter maps based on diffusion tensor imaging; and the other is the state-of-the-art computational neuroanatomy technology based on the highly-elastic non-linear brain normalization method (LDDMM), which can preserve WM fiber connectivity in the transformation process. In Aim 1, we will extend this effort to 1) optimize the white matter atlas for the elderly population, and 2) test our advanced cost functions of LDDMM to improve the normalization quality. After the optimization, we will apply these techniques to detect WM abnormalities in AD and Mild Cognitive Impairment (MCI) patients by cross-sectional analysis (Aim 2) and longitudinal analysis (Aim 3). An existing longitudinal MRI and clinical database acquired at Johns Hopkins University is available for this study. The data were acquired every four months for one year from the same subjects. In Aim 2, normalized DTI data from AD and MCI patients were compared to age-matched controls to detect disease-specific alterations in morphology and MR parameters (diffusion constant, diffusion anisotropy, and T2). In Aim 3, we will characterize disease progression-related changes in morphology and MR parameters by a longitudinal analysis. In summary, we propose a new image-analysis method for a comprehensive WM survey that will detect disease-specific changes and disease progression-specific changes in MCI and AD. PUBLIC HEALTH RELEVANCE: We will develop new imaging biomarkers for Alzheimer's disease. Our image-analysis method based on probabilistic white matter atlas and white matter fiber direction-oriented transformation enable us to comprehensively survey the white matter structures to detect disease specific and time-dependent alteration of the brain.
描述(申请人提供):本申请的总体假设是白质(WM),尤其是边缘束,是阿尔茨海默病(AD)的主要靶标之一,弥散张量成像(DTI)可以灵敏地检测白质(WM)的变化这些 WM 小册子。目标是开发定量 DTI 图像分析技术来检测 AD 中的 WM 异常。 AD 是痴呆症的最常见原因。尽管主要病理学是皮质神经元细胞变性,但越来越多的证据表明 WM 病理学优于灰质病理学。此外,WM 改变可能是神经细胞损失的间接指标,因为神经细胞的体积比其有髓纤维小得多。因此,WM 似乎是早期诊断和疾病进展监测的一个很好的焦点。 MRI是一种在美国广泛应用的非侵入性技术,作为成像生物标志物具有巨大的潜力。然而,传统的MRI无法提供区分各种WM结构的对比,并且对于检测特定WM结构的变化的灵敏度和特异性较低。 DTI 是一种有可能检测特定白质结构异常的方法。与传统 MRI 分析相比,使用这种方法可以提高检测 WM 异常的敏感性和特异性。然而,DTI 数据的量化技术尚未成熟,难以充分利用 DTI 揭示的 WM 解剖信息。该应用程序基于我们开发的两项技术创新:一是立体坐标下的白质脑图谱(JHU-DTI-MNI),其中包含基于扩散张量成像的详细白质图;另一个是基于高弹性非线性脑归一化方法(LDDMM)的最先进的计算神经解剖学技术,可以在转换过程中保留WM纤维连接性。在目标 1 中,我们将把这项工作扩展到 1) 优化老年人群的白质图谱,2) 测试我们的 LDDMM 高级成本函数以提高标准化质量。优化后,我们将应用这些技术通过横断面分析(目标 2)和纵向分析(目标 3)来检测 AD 和轻度认知障碍(MCI)患者的 WM 异常。约翰·霍普金斯大学获得的现有纵向 MRI 和临床数据库可用于本研究。一年内每四个月从同一受试者处获取一次数据。在目标 2 中,将 AD 和 MCI 患者的归一化 DTI 数据与年龄匹配的对照进行比较,以检测形态和 MR 参数(扩散常数、扩散各向异性和 T2)的疾病特异性变化。在目标 3 中,我们将通过纵向分析来表征与疾病进展相关的形态学和 MR 参数的变化。总之,我们提出了一种新的图像分析方法,用于全面的 WM 调查,该方法将检测 MCI 和 AD 的疾病特异性变化和疾病进展特异性变化。公共健康相关性:我们将开发阿尔茨海默病的新成像生物标志物。我们基于概率白质图谱和白质纤维定向变换的图像分析方法使我们能够全面调查白质结构,以检测大脑的疾病特异性和时间依赖性变化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Advanced neonatal NeuroMRI.
先进的新生儿神经磁共振成像。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenichi Oishi其他文献

Kenichi Oishi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenichi Oishi', 18)}}的其他基金

Precision Medicine for Neonatal Hypoxic-Ischemic Encephalopathy: Combined Neuroimaging Clinical Approach to Link Phenotypes to Prognosis
新生儿缺氧缺血性脑病的精准医学:将表型与预后联系起来的联合神经影像学临床方法
  • 批准号:
    10557147
  • 财政年份:
    2022
  • 资助金额:
    $ 16.81万
  • 项目类别:
Precision Medicine for Neonatal Hypoxic-Ischemic Encephalopathy: Combined Neuroimaging Clinical Approach to Link Phenotypes to Prognosis
新生儿缺氧缺血性脑病的精准医学:将表型与预后联系起来的联合神经影像学临床方法
  • 批准号:
    10417856
  • 财政年份:
    2022
  • 资助金额:
    $ 16.81万
  • 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
  • 批准号:
    8107915
  • 财政年份:
    2011
  • 资助金额:
    $ 16.81万
  • 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
  • 批准号:
    8893110
  • 财政年份:
    2011
  • 资助金额:
    $ 16.81万
  • 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
  • 批准号:
    8334037
  • 财政年份:
    2011
  • 资助金额:
    $ 16.81万
  • 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
  • 批准号:
    8700435
  • 财政年份:
    2011
  • 资助金额:
    $ 16.81万
  • 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
  • 批准号:
    8510698
  • 财政年份:
    2011
  • 资助金额:
    $ 16.81万
  • 项目类别:

相似国自然基金

TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
  • 批准号:
    82220108016
  • 批准年份:
    2022
  • 资助金额:
    252 万元
  • 项目类别:
    国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
  • 批准号:
    81800806
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
  • 批准号:
    81700824
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
  • 批准号:
    81670269
  • 批准年份:
    2016
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
  • 批准号:
    31470998
  • 批准年份:
    2014
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 16.81万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 16.81万
  • 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
  • 批准号:
    10555899
  • 财政年份:
    2023
  • 资助金额:
    $ 16.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了