Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
基本信息
- 批准号:7242992
- 负责人:
- 金额:$ 28.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAffinityApoptosisBindingBiochemicalBiologicalBiological AssayBlood VesselsBrainCardiovascular DiseasesCaspaseCell physiologyCellsChemicalsComplexCysteineDevelopmentDiseaseEnzymesEventExcisionFluorescence SpectroscopyGenetic TranscriptionHealth Care CostsHumanHuman BiologyHypertensionImmunityIn VitroInflammationLeadMatrix MetalloproteinasesMediatingModificationMolecularMyocardialNeoplasm MetastasisNeuronsNitric OxideNitrosationOrganOxidesPathway interactionsPeptidesPerfusionPhysiologicalPhysiological ProcessesPhysiologyPlasmaPlatelet aggregationPlayPost-Translational Protein ProcessingProcessProtein IsoformsProteinsReactionReagentRelaxationReportingResearchRoleScreening procedureSepharoseSignal TransductionSignal Transduction PathwaySkinSoluble Guanylate CyclaseSpecificitySpectrum AnalysisSulfhydryl CompoundsSynaptic plasticityThioredoxinVasodilationWorkZinc Fingersbasecaspase-3cyclooxygenase 2protein functionprotein protein interactionresearch studysmall moleculetooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): The controls governing S-nitrosation are unknown. In addition, the ramifications of S-nitrosation signaling are virtually unknown. Determining the molecular mechanism(s) that permits cells to achieve specificity in S-nitrosation reactions is the focus of this proposal. Nitric oxide (NO) plays integral roles in mammalian physiology including vasodilation, neuronal signaling, and immunity. NO affects cellular physiology by multiple pathways. The best studied pathway is through binding to the enzyme, soluble guanylate cyclase (sGC). The actions of NO that have been described cannot be completely accounted for when only considering sGC as a target. S-Nitrosation is one type of sGC-independent signaling and involves the post-translational modification of cysteine on proteins. In many cases, modification of a cysteine alters protein function. Processes similar to this are almost exclusively a regulated cellular event with a biological machinery in tight control. In vitro work has shown that when NO reacts with a protein, many cysteine thiols are modified. However, in a cellular context when NO was not added but produced by the cell itself, multiple modifications never occur. Additionally, NO is synthesized at very low concentrations such that without a control mechanism in place, protein modification would be highly inefficient. The most logical explanation for such disparities is that the in vitro experiment lacked the cellular components that confer specificity to the S-nitrosation reaction. Experimentally, this project will attempt to identify these components by using a variety of advanced tools such as: tailored affinity probes, inductively-coupled plasma spectroscopy, fluorescence spectroscopy, and recently developed S-nitrosation specific biochemical assays. Nitric oxide (NO) mediates blood vessel relaxation, complex aspects of myocardial function, perfusion and function of all major organs, synaptic plasticity in the brain, platelet aggregation, skin function, and numerous other physiological processes. Given the role of NO in human biology, a complete understanding of the molecular details involved in its signaling will have clear application to the understanding and treatment of a broad spectrum of diseases, such as hypertension and cardiovascular disease. This research can lead to the development of more effective therapies and, potentially, reduce health care costs.
描述(由申请人提供): S-亚硝化的控制方法未知。此外,S-亚硝化信号传导的后果实际上是未知的。确定允许细胞在 S-亚硝化反应中实现特异性的分子机制是本提案的重点。一氧化氮 (NO) 在哺乳动物生理学中发挥着不可或缺的作用,包括血管舒张、神经元信号传导和免疫。 NO 通过多种途径影响细胞生理学。研究最好的途径是通过与可溶性鸟苷酸环化酶 (sGC) 结合。当仅考虑 sGC 作为目标时,不能完全解释已经描述的 NO 的作用。 S-亚硝化是一种不依赖于 sGC 的信号传导,涉及蛋白质上半胱氨酸的翻译后修饰。在许多情况下,半胱氨酸的修饰会改变蛋白质功能。与此类似的过程几乎完全是受生物机制严格控制的受调节细胞事件。体外研究表明,当 NO 与蛋白质反应时,许多半胱氨酸硫醇会被修饰。然而,在细胞环境中,当 NO 不是添加而是由细胞本身产生时,多重修饰永远不会发生。此外,NO 的合成浓度非常低,因此如果没有适当的控制机制,蛋白质修饰将非常低效。对于这种差异最合理的解释是体外实验缺乏赋予 S-亚硝化反应特异性的细胞成分。在实验上,该项目将尝试使用各种先进工具来识别这些成分,例如:定制的亲和探针、电感耦合等离子体光谱、荧光光谱以及最近开发的 S-亚硝化特异性生化测定。一氧化氮 (NO) 介导血管舒张、心肌功能的复杂方面、所有主要器官的灌注和功能、大脑中的突触可塑性、血小板聚集、皮肤功能以及许多其他生理过程。鉴于一氧化氮在人类生物学中的作用,对其信号传导所涉及的分子细节的完整了解将明显应用于理解和治疗多种疾病,例如高血压和心血管疾病。这项研究可以促进更有效疗法的开发,并有可能降低医疗保健成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL A. MARLETTA其他文献
MICHAEL A. MARLETTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL A. MARLETTA', 18)}}的其他基金
Activation Mechanism of Soluble Guanylate Cyclase
可溶性鸟苷酸环化酶的激活机制
- 批准号:
10078617 - 财政年份:2019
- 资助金额:
$ 28.11万 - 项目类别:
Activation Mechanism of Soluble Guanylate Cyclase
可溶性鸟苷酸环化酶的激活机制
- 批准号:
10317062 - 财政年份:2019
- 资助金额:
$ 28.11万 - 项目类别:
Nitric Oxide Signaling and Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7317430 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Nitric Oxide Signaling and Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7477191 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Nitric Oxide Signaling And Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7943059 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Nitric Oxide Signaling And Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7728873 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7778897 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7364650 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7583873 - 财政年份:2007
- 资助金额:
$ 28.11万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 28.11万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 28.11万 - 项目类别:
An immunotherapeutic IgY formulation against norovirus diarrhea
一种针对诺如病毒腹泻的免疫治疗 IgY 制剂
- 批准号:
10693530 - 财政年份:2023
- 资助金额:
$ 28.11万 - 项目类别:
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
- 批准号:
10752369 - 财政年份:2023
- 资助金额:
$ 28.11万 - 项目类别:
Leveraging protein dynamics to drug filovirus protein-nucleic acid interactions using simulations and experiments
通过模拟和实验利用蛋白质动力学来药物丝状病毒蛋白质-核酸相互作用
- 批准号:
10680759 - 财政年份:2022
- 资助金额:
$ 28.11万 - 项目类别: