Mitochondrial Biogenesis and Endothelial Cell Phenotype

线粒体生物发生和内皮细胞表型

基本信息

项目摘要

DESCRIPTION (provided by applicant): The endothelium is an important component of normal vascular homeostasis and endothelial dysfunction is a prelude to the development of vascular disease and its clinical manifestations such as heart attack and stroke. Endothelial dysfunction is thought to result, in part, from the injurious actions of established vascular disease risk factors such as hypercholesterolemia, hypertension, and diabetes. Resistance to endothelial dysfunction and injury is an important protective mechanism against vascular disease, as patients with preserved endothelial function are not predisposed to clinical vascular events. However, the precise molecular events that determine susceptibility or resistance to endothelial dysfunction are not known. Preliminary data presented in this application indicate that induction of a metabolic stress response (via AMP kinase activation) stimulates mitochondrial biogenesis and protects the endothelium from injurious stimuli. Furthermore, our data link this protective effect to suppression of c-Jun N-terminal kinase activation - a key component of the environmental stress response. Therefore, our central hypothesis is that the metabolic stress response and resultant stimulation of mitochondrial biogenesis are key determinants of endothelial cell phenotype and resistance to injurious stimuli. The objective of this application, therefore, is to determine the molecular mechanism(s) whereby metabolic stress and mitochondrial biogenesis modulate endothelial function and test the hypothesis that increased endothelial cell resistance to dysfunction will ameliorate the development of vascular disease. In order to achieve this objective, we will first determine the component(s) of the metabolic stress response and mitochondrial biogenesis required to protect the endothelium from injurious stimuli. We will model metabolic stress using pharmacologic (AICAR, 2-deoxyglucose) and molecular (PGC-11, RIP140) means and quantify mitochondrial biogenesis. We will then dissociate the metabolic stress response from mitochondrial biogenesis using pharmacologic (chloramphenicol) and molecular (Tfam) tools and determine the implications for endothelial protection. We will then probe the involvement of known metabolic targets such as eNOS, FOXOs, and SIRT1in endothelial stress resistance. Next we will determine the mechanism(s) whereby the metabolic stress response and mitochondrial biogenesis attenuates JNK activation. Metabolic stress and mitochondrial biogenesis will be manipulated and we will examine the implications for JNK activation by investigating important upstream (MAP3K and MAP2K) kinases as well as the specific JNK isoforms involved via a chemical genetic approach. We will then examine important determinants of JNK inactivation such as ROS and MAP kinase phosphatases. Finally, using a chemical genetic approach, we will determine temporal aspects of JNK regulation. Finally, we will determine the implications of manipulating endothelial cell mitochondrial biogenesis on endothelial dysfunction and vascular disease in vivo. We have developed tools to manipulate endothelial cell PGC11 as a model of mitochondrial biogenesis and mass in vivo. Using these animals, we will determine the implications of endothelial cell PGC11 on mitochondrial biogenesis and mass and endothelial resistance to the dysfunction associated with hypertension and atherosclerosis. The experiments outlined above should provide us with a solid working knowledge of how mitochondrial biogenesis and increased mitochondrial mass contributes to the control of endothelial phenotype and how this translates into homeostatic responses in vivo. With this information in hand, we should have the requisite insight to design new tools directed at modulating vascular redox status and phenotype with an eye toward the treatment of vascular disease. PUBLIC HEALTH RELEVANCE: The endothelium is the lining of blood vessels and its behavior is an important control point for blood vessels. We know from experience that blood vessels in people at risk for atherosclerosis do not work normally. In fact, those individuals with the worst function in their blood vessels are at the highest risk for heart attack. In this proposal, we provide evidence that the number of mitochondria in the endothelium determines the normal behavior of blood vessels. We have also developed some tools where we can change the number of mitochondria in the endothelium and, we believe, change the behavior of blood vessels such that they act more like normal vessels without atherosclerosis. Therefore, this proposal contains experiments to determine how mitochondria, the "powerhouse of the cell," controls the behavior of blood vessels. These experiments should provide us with the knowledge we need to design new therapies for treating atherosclerosis.
描述(申请人提供):内皮是正常血管稳态的重要组成部分,内皮功能障碍是血管疾病及其临床表现(例如心脏病发作和中风)发展的前奏。内皮功能障碍被认为部分是由已确定的血管疾病危险因素(例如高胆固醇血症、高血压和糖尿病)的有害作用造成的。抵抗内皮功能障碍和损伤是预防血管疾病的重要保护机制,因为内皮功能保留的患者不易发生临床血管事件。然而,决定内皮功能障碍易感性或抵抗力的精确分子事件尚不清楚。本申请中提供的初步数据表明,代谢应激反应的诱导(通过 AMP 激酶激活)可刺激线粒体生物发生并保护内皮免受有害刺激。此外,我们的数据将这种保护作用与抑制 c-Jun N 末端激酶激活(环境应激反应的关键组成部分)联系起来。因此,我们的中心假设是,代谢应激反应和由此产生的线粒体生物发生的刺激是内皮细胞表型和对有害刺激的抵抗力的关键决定因素。因此,本申请的目的是确定代谢应激和线粒体生物发生调节内皮功能的分子机制,并检验增加内皮细胞对功能障碍的抵抗力将改善血管疾病的发展的假设。为了实现这一目标,我们将首先确定保护内皮免受有害刺激所需的代谢应激反应和线粒体生物发生的组成部分。我们将使用药理学(AICAR、2-脱氧葡萄糖)和分子(PGC-11、RIP140)方法模拟代谢应激,并量化线粒体生物发生。然后,我们将使用药理学(氯霉素)和分子(Tfam)工具将代谢应激反应与线粒体生物发生分离,并确定对内皮保护的影响。然后我们将探讨已知的代谢靶标(例如 eNOS、FOXO 和 SIRT1)在内皮应激抵抗中的参与情况。接下来,我们将确定代谢应激反应和线粒体生物发生减弱 JNK 激活的机制。代谢应激和线粒体生物合成将被操纵,我们将通过研究重要的上游(MAP3K 和 MAP2K)激酶以及通过化学遗传方法涉及的特定 JNK 亚型来检查 JNK 激活的影响。然后我们将检查 JNK 失活的重要决定因素,例如 ROS 和 MAP 激酶磷酸酶。最后,使用化学遗传学方法,我们将确定 JNK 调节的时间方面。最后,我们将确定操纵内皮细胞线粒体生物发生对体内内皮功能障碍和血管疾病的影响。我们开发了工具来操纵内皮细胞 PGC11 作为体内线粒体生物发生和质量的模型。利用这些动物,我们将确定内皮细胞 PGC11 对线粒体生物发生和质量以及内皮细胞对与高血压和动脉粥样硬化相关的功能障碍的抵抗力的影响。上述实验应该为我们提供关于线粒体生物发生和线粒体质量增加如何有助于控制内皮表型以及如何转化为体内稳态反应的扎实工作知识。有了这些信息,我们应该有必要的洞察力来设计新的工具,旨在调节血管氧化还原状态和表型,着眼于血管疾病的治疗。公共卫生相关性:内皮是血管的内层,其行为是血管的重要控制点。根据经验我们知道,有动脉粥样硬化风险的人的血管不能正常工作。事实上,那些血管功能最差的人患心脏病的风险最高。在这项提案中,我们提供了证据表明内皮中线粒体的数量决定了血管的正常行为。我们还开发了一些工具,可以改变内皮细胞中线粒体的数量,并且我们相信,可以改变血管的行为,使其更像没有动脉粥样硬化的正常血管。因此,该提案包含确定“细胞动力源”线粒体如何控制血管行为的实验。这些实验应该为我们提供设计治疗动脉粥样硬化的新疗法所需的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Francis Keaney其他文献

John Francis Keaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Francis Keaney', 18)}}的其他基金

Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
  • 批准号:
    10619665
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
  • 批准号:
    10412985
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
  • 批准号:
    10159954
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Role of energy metabolism in the brown fat program
能量代谢在棕色脂肪计划中的作用
  • 批准号:
    9135635
  • 财政年份:
    2015
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    7984162
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    8900326
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    8109965
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    8759579
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    8292092
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:
Nox4 and Vascular Homeostasis
Nox4 和血管稳态
  • 批准号:
    8496101
  • 财政年份:
    2010
  • 资助金额:
    $ 40.94万
  • 项目类别:

相似国自然基金

HMGCS2调控巨噬细胞训练免疫对动脉粥样硬化斑块“维稳”的机制研究
  • 批准号:
    82373884
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于NLRP3炎性小体驱动的巨噬细胞焦亡研究穗花杉双黄酮抗动脉粥样硬化作用
  • 批准号:
    82360786
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于HDAC10/PANX1探讨外源性褪黑素抑制巨噬细胞焦亡稳定动脉粥样硬化易损斑块的作用机制
  • 批准号:
    82300511
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于仿生脂质纳米疫苗的动脉粥样硬化双重免疫治疗策略及机制研究
  • 批准号:
    22305170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
  • 批准号:
    10725358
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
Dendritic cell targeting by bacterial LysM proteins to suppress inflammation
树突状细胞通过细菌 LysM 蛋白靶向抑制炎症
  • 批准号:
    10750594
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
YAP1, neointima formation, and blood pressure regulation
YAP1、新内膜形成和血压调节
  • 批准号:
    10731404
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
Acceleration of Circulatory and Neurological Aging due to Wildfire Exposures
野火暴露导致循环系统和神经系统老化加速
  • 批准号:
    10544543
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
Role of PXR in drug-elicited cardiovascular disease
PXR 在药物引起的心血管疾病中的作用
  • 批准号:
    10576675
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了