Oligodendrocytes, Glutamate Receptors, and Lead Neurotoxicity
少突胶质细胞、谷氨酸受体和铅神经毒性
基本信息
- 批准号:7337480
- 负责人:
- 金额:$ 47.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-22 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAffectAgeAnimalsAstrocytesBiochemicalBrainBuffersCa(2+)-Calmodulin Dependent Protein KinaseCalcineurinCell NucleusCell TransplantsCell physiologyCellsChildChromosome PairingCognitive deficitsConditionD AspartateDefectDevelopmentDevelopmental ProcessDiseaseEventExposure toFeedbackGene ExpressionGene SilencingGene TransferGlutamate ReceptorGlutamatesGoalsHippocampus (Brain)ImageImpairmentIn VitroInterventionIonsKainic Acid ReceptorsLeadLead PoisoningLearningLong-Term PotentiationMediatingMemoryMicroscopicMitochondriaMolecularMorphologyMyelinN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNeuraxisNeurogliaNeurologicNeuronsOligodendrogliaOxidation-ReductionOxidative StressPersonal SatisfactionPhosphorylationPhysiologicalPlayPredispositionPrincipal InvestigatorProcessRNA InterferenceRegulationRelative (related person)Research PersonnelRiskRoleSignal PathwaySignal TransductionSignaling MoleculeSliceSynapsesSynaptic plasticityTechniquesThinkingTodayToxic effectUnited StatesVirusWorkage relatedcell typecellular targetingcopingdivalent metaleffusionexcitotoxicityfunctional disabilityin vivoin vivo Modelinsightkainatelead exposurelead ionmitochondrial dysfunctionneurobehavioralneurotoxicityneurotransmissionnoveloligodendrocyte precursorprogramsreceptorresearch studytoxicant
项目摘要
DESCRIPTION (provided by applicant)
Lead (Pb2+) poisoning remains the most common disease of environmental origin in the United States today. The long-term goal is to investigate age-specific and cell type-specific mechanisms by which lead causes its neurotoxicity. Lead is known to cause myelin defects, although the mechanism is unclear. Myelin in the central nervous system is formed by oligodendrocytes, making these cells a possible target for lead. The investigators have previously demonstrated that environmentally relevant, low-level lead can disturb the survival, proliferation, and differentiation of oligodendrocytes at critical windows of development. The investigators have also demonstrated that developing oligodendrocytes are highly vulnerable to excitotoxicity mediated by Ca2+-permeable glutamate receptors (GluRs). Lead is a divalent metal ion that can mimic Ca2+ and interferes with Ca2+-sensitive targets. Mitochondria play a major role in buffering intracellular Ca2+, and are a known Pb2+ target. Here we propose to examine the hypothesis that a critical factor in lead neurotoxicity is the impairment of Ca2+-permeable GluR function and alteration of developmental GluR expression, concurrently with deficits in signaling mechanisms involving altered mitochondrial dynamics and redox potential in developing oligodendrocytes, resulting in aberrant neuron-glia connectivity and functional impairments. Aim 1 of this proposal will examine whether Pb2+ inhibits Ca2*-permeable GluR function in developing oligodendrocytes, and determine the relative roles of GluR subtypes in Pb2+ toxicity. Aim 2 will determine whether lead exposure modifies GluR subunit expression and phosphorylation state, and downstream signaling molecules that regulate GluR function. Aim 3 will determine whether Pb2+ causes alterations in mitochondrial function, maturation, dynamics effusion and fission, and redox state in developing oligodendrocytes. Overall, the Principal Investigator proposes to use a combination of cellular and molecular techniques applied to both in vitro and in vivo models of lead exposure, to provide overlapping approaches to unravel novel mechanisms of lead-induced toxicity to the developing brain. This project is the first to study the role of GluRs and mitochondria of developing oligodendroglia in lead toxicity. Elucidating these previously unrecognized mechanisms of Pb2+ action will provide insights into understanding the risks associated with lead exposure and the development of intervention strategies of targeting Ca2+-permeable GluRs and associated signaling pathways for dealing with lead toxicity.
描述(由申请人提供)
铅 (Pb2+) 中毒仍然是当今美国最常见的环境疾病。长期目标是研究铅引起神经毒性的年龄特异性和细胞类型特异性机制。已知铅会导致髓磷脂缺陷,但其机制尚不清楚。中枢神经系统中的髓磷脂由少突胶质细胞形成,使这些细胞成为铅的可能目标。研究人员此前已证明,环境相关的低水平铅会扰乱少突胶质细胞在关键发育窗口期的存活、增殖和分化。研究人员还证明,发育中的少突胶质细胞非常容易受到 Ca2+ 渗透性谷氨酸受体 (GluR) 介导的兴奋性毒性的影响。铅是一种二价金属离子,可以模拟 Ca2+ 并干扰 Ca2+ 敏感目标。线粒体在缓冲细胞内 Ca2+ 方面发挥着重要作用,并且是已知的 Pb2+ 靶标。在这里,我们建议检验以下假设:铅神经毒性的一个关键因素是 Ca2+ 通透性 GluR 功能的损害和发育性 GluR 表达的改变,同时信号机制的缺陷涉及发育中少突胶质细胞的线粒体动力学和氧化还原电位的改变,从而导致异常神经元-胶质细胞连接和功能障碍。该提案的目标 1 将检查 Pb2+ 是否会抑制少突胶质细胞发育过程中 Ca2* 渗透性 GluR 功能,并确定 GluR 亚型在 Pb2+ 毒性中的相对作用。目标 2 将确定铅暴露是否会改变 GluR 亚基表达和磷酸化状态,以及调节 GluR 功能的下游信号分子。目标 3 将确定 Pb2+ 是否会导致发育中少突胶质细胞线粒体功能、成熟、动态渗出和裂变以及氧化还原状态的改变。总体而言,首席研究员建议结合使用细胞和分子技术应用于铅暴露的体外和体内模型,以提供重叠的方法来揭示铅对发育中的大脑产生毒性的新机制。该项目是第一个研究 GluR 和线粒体在少突胶质细胞发育过程中在铅毒性中的作用的项目。阐明这些以前未被认识的 Pb2+ 作用机制将为了解与铅暴露相关的风险以及制定针对 Ca2+ 渗透性 GluR 的干预策略和处理铅毒性的相关信号通路提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenbin Deng其他文献
Wenbin Deng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenbin Deng', 18)}}的其他基金
Differentiation and Integration of Trisomy 21 iPSCs in an Animal Model
动物模型中 21 三体 iPSC 的分化和整合
- 批准号:
9538075 - 财政年份:2017
- 资助金额:
$ 47.46万 - 项目类别:
Regenerating CNS white matter using induced pluripotent stem cells
使用诱导多能干细胞再生中枢神经系统白质
- 批准号:
9077989 - 财政年份:2016
- 资助金额:
$ 47.46万 - 项目类别:
Glutamate Receptors in Hypoxic-ischemic Injury to Developing Oligodendrocytes
谷氨酸受体在发育中少突胶质细胞缺氧缺血性损伤中的作用
- 批准号:
8253731 - 财政年份:2008
- 资助金额:
$ 47.46万 - 项目类别:
Glutamate Receptors in Hypoxic-ischemic Injury to Developing Oligodendrocytes
谷氨酸受体在发育中少突胶质细胞缺氧缺血性损伤中的作用
- 批准号:
7560011 - 财政年份:2008
- 资助金额:
$ 47.46万 - 项目类别:
Glutamate Receptors in Hypoxic-ischemic Injury to Developing Oligodendrocytes
谷氨酸受体在发育中少突胶质细胞缺氧缺血性损伤中的作用
- 批准号:
7463517 - 财政年份:2008
- 资助金额:
$ 47.46万 - 项目类别:
Glutamate Receptors in Hypoxic-ischemic Injury to Developing Oligodendrocytes
谷氨酸受体在发育中少突胶质细胞缺氧缺血性损伤中的作用
- 批准号:
8039901 - 财政年份:2008
- 资助金额:
$ 47.46万 - 项目类别:
Glutamate Receptors in Hypoxic-ischemic Injury to Developing Oligodendrocytes
谷氨酸受体在发育中少突胶质细胞缺氧缺血性损伤中的作用
- 批准号:
7795706 - 财政年份:2008
- 资助金额:
$ 47.46万 - 项目类别:
Oligodendrocytes, Glutamate Receptors, and Lead Neurotoxicity
少突胶质细胞、谷氨酸受体和铅神经毒性
- 批准号:
7847872 - 财政年份:2007
- 资助金额:
$ 47.46万 - 项目类别:
Oligodendrocytes, Glutamate Receptors, and Lead Neurotoxicity
少突胶质细胞、谷氨酸受体和铅神经毒性
- 批准号:
8078963 - 财政年份:2007
- 资助金额:
$ 47.46万 - 项目类别:
Oligodendrocytes, Glutamate Receptors, and Lead Neurotoxicity
少突胶质细胞、谷氨酸受体和铅神经毒性
- 批准号:
7487876 - 财政年份:2007
- 资助金额:
$ 47.46万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 47.46万 - 项目类别:
Early Life Stress Induced Reprogramming of Vascular Function by the Endothelium and Macrophage Systems
生命早期的压力诱导内皮细胞和巨噬细胞系统对血管功能进行重新编程
- 批准号:
10555125 - 财政年份:2023
- 资助金额:
$ 47.46万 - 项目类别:
Multi-Omics Predictors of Oral HPV Outcomes among PLWH
PLWH 口腔 HPV 结果的多组学预测
- 批准号:
10557585 - 财政年份:2023
- 资助金额:
$ 47.46万 - 项目类别:
Metabolism during the Progression of Photoreceptor Degeneration
感光器退化过程中的代谢
- 批准号:
10638849 - 财政年份:2023
- 资助金额:
$ 47.46万 - 项目类别:
Molecular mechanisms behind microbiota regulation of host amino acid and glucose homeostasis
微生物群调节宿主氨基酸和葡萄糖稳态背后的分子机制
- 批准号:
10639042 - 财政年份:2023
- 资助金额:
$ 47.46万 - 项目类别: