CEGS: Microscale Life Sciences Center
CEGS:微型生命科学中心
基本信息
- 批准号:7276113
- 负责人:
- 金额:$ 349.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAntibodiesAreaAttenuatedAutomobile DrivingBar CodesBarrett EsophagusBile fluidBiochemicalBiologicalBiological MarkersBiological ModelsBiological SciencesBiologyBiopsyBoxingCapillary ElectrophoresisCardiovascular systemCaspase-1Cell Array AnalysesCell CommunicationCell CycleCell DeathCell ProliferationCell SeparationCell SurvivalCell divisionCell physiologyCellsCellular biologyCessation of lifeChronicClassificationClear CellClinical ResearchClonal EvolutionCommunicable DiseasesComplexComputer Systems DevelopmentConditionConsumptionDataData AnalysesData SetDecision MakingDepthDetectionDevelopmentDevicesDiagnosisDiagnosticDiseaseDisease PathwayDisease regressionDyesEarly DiagnosisEarly InterventionEffectivenessElectronicsEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEpithelialEpitheliumEquilibriumEsophagealEthanolEventEvolutionFailureFibroblastsFigs - dietaryFingerprintFluorescenceFred Hutchinson Cancer Research CenterFundingGastrinsGene DosageGene ExpressionGenerationsGenesGeneticGenomeGenome StabilityGenomicsGenotypeGoalsGrowthHealthHealth Care CostsHeartHeart DiseasesHeelHeterogeneityHumanImmuneIn SituIn VitroIndividualInfarctionInfectionInflammationInflammatoryInflammatory ResponseInheritedInjuryInterleukin-1Interleukin-18Interphase CellInvestigationIonsKnowledgeLaboratoriesLeadLifeLigandsLinkLongevityLoss of HeterozygosityMalignant NeoplasmsMapsMeasurementMeasuresMediatingMediator of activation proteinMedical centerMembraneMembrane PotentialsMetabolicMethodsModelingModificationMolecularMolecular ProfilingMonitorMusMutationNatural SelectionsNeoplasmsNervous system structureNon-Steroidal Anti-Inflammatory AgentsNumbersOperative Surgical ProceduresOpticsOrgan TransplantationOrganismOutcomePathologyPathway interactionsPatientsPersonal SatisfactionPhasePhenotypePhysiologicalPhysiologyPlacementPloidiesPolymerase Chain ReactionPopulationPositioning AttributePrecancerous ConditionsPredispositionPremalignantPrincipal InvestigatorProblem SolvingProcessProductionProliferatingProteinsProteomicsRangeRateRefluxRelianceResearchResearch PersonnelResistanceResolutionRespirationRiskRisk FactorsRunningScanningScienceSeleniumSeriesSpecific qualifier valueSquamous EpitheliumStimulusStrokeSurfaceSyndromeSystemTechnologyTestingTherapeuticTherapeutic InterventionTimeTissuesToxic effectTranscriptTranslatingTumor Suppressor GenesUniversitiesVaccinationVariantVertebratesVisionWashingtonbasebody systemcancer therapycostcytokinedisease phenotypedriving forceextracellularfightinggenetic selectiongenetic variantgenome sequencinghigh throughput technologyimprovedin vivoinhibitor/antagonistinjuredinterestknock-downleukemiamacrophagemicrosystemsmortalityneoplasticnew technologyprogramsresearch studyresilienceresponseresponse to injurysample fixationsensorsingle cell analysissuccesstechnological innovationtherapeutic targettooltranscriptomicstumor progressionuptakeuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Increasingly, it is becoming apparent that understanding, predicting, and diagnosing disease states is confounded by the inherent heterogeneity of in situ cell populations. This variation in cell fate can be dramatic, for instance, one cell living while an adjacent cell dies. Thus, in order to understand fundamental pathways involved in disease states, it is necessary to link preexisting cell state to cell fate in the disease process at the individual cell level. The Microscale Life Sciences Center (MLSC) at the University of Washington is focused on solving this problem, by developing cutting-edge microscale technology for high throughput genomic-level and multi-parameter single-cell analysis, and applying that technology to fundamental problems of biology and health. Our vision is to address pathways to disease states directly at the individual cell level, at increasing levels of complexity that progressively move to an in vivo understanding of disease. We propose to apply MLSC technological innovations to questions that focus on the balance between cell proliferation and cell death. The top three killers in the US, cancer, heart disease and stroke, all involve an imbalance in this cellular decision-making process. Because of intrinsic cellular heterogeneity in the live/die decision, this fundamental cellular biology problem is an example of one for which analysis of individual cells is essential for developing the link between genomics, cell function, and disease. The specific systems to be studied are proinflammatory cell death (pyroptosis) in a mouse macrophage model, and neoplastic
progression in the Barrett's Esophagus (BE) precancerous model. In each case, diagnostic signatures for specific cell states will be determined by measuring both physiological (cell cycle, ploidy, respiration rate, membrane potential) and genomic (gene expression profiles by single-cell proteomics, qRT-PCR and transcriptomics; LOH by LATE-PCR) parameters. These will then be correlated with cell fate via the same sets of measurements after a challenge is administered, for instance, a cell death stimulus for pyroptosis or a predisposing risk factor challenge (acid reflux) for BE. Ultimately, time series will be taken to map out the pathways that underlie the live/die decision. Finally, this information will be used
as a platform to define cell-cell interactions at the single-cell level, to move information on disease pathways towards greater in vivo relevance. New technology will be developed and integrated into the existing MLSC Living Cell Analysis cassette system to support these ambitious biological goals including 1) automated systems for cell placement, off-chip device interconnects, and high throughput data analysis with user friendly interfaces; 2) new optical and electronic sensors based on a new detection platform, new dyes and nanowires; and 3) new micromodules for single-cell qRT-PCR, LATE-PCR for LOH including single-cell pyrosequencing, on-chip single-cell proteomics, and single-cell transcriptomics using barcoded nanobeads.
描述(由申请人提供):越来越明显的是,理解,预测和诊断疾病状态与原位细胞种群的固有异质性混淆。例如,这种细胞命运的这种变化可能是戏剧性的,例如,一个相邻细胞死亡的细胞生活。因此,为了理解疾病状态中涉及的基本途径,有必要将先前存在的细胞状态与单个细胞水平的疾病过程中的细胞命运联系起来。华盛顿大学的微观生命科学中心(MLSC)致力于解决此问题,通过为高通量基因组级别和多参数单细胞分析开发尖端的微观技术,并将该技术应用于基本问题生物学与健康。我们的愿景是直接在单个细胞水平上直接解决疾病状态的途径,以越来越多的复杂程度逐渐转化为对疾病的体内理解。我们建议将MLSC技术创新应用于关注细胞增殖和细胞死亡之间平衡的问题。美国的前三名杀手,癌症,心脏病和中风,都涉及这种细胞决策过程中的失衡。由于实时/死亡决策中的固有细胞异质性,因此这个基本的细胞生物学问题是一个例子,其中分析单个细胞对于发展基因组学,细胞功能和疾病之间的联系至关重要。要研究的特定系统是小鼠巨噬细胞模型中的促炎细胞死亡(流体吞噬)和肿瘤
巴雷特食管(BE)癌前模型的进展。 在每种情况下,特定细胞态的诊断特征将通过测量生理学(细胞周期,倍性,呼吸速率,膜电位)和基因组(通过单细胞蛋白质组学,QRT-PCR和转录组学; loh loh lo loh by lo loh loh loh loh loh loh loh loh loh loh loh -pcr)参数。然后,在挑战后通过相同的一组测量值将这些与细胞命运相关,例如,用于凋亡的细胞死亡刺激或BE的易感性风险因素挑战(胃酸反流)。最终,将花费时间序列来绘制构成现场/死亡决定的途径。最后,将使用此信息
作为在单细胞水平上定义细胞 - 细胞相互作用的平台,将有关疾病途径的信息转移到更大的体内相关性。将开发新技术并将其集成到现有的MLSC Living Cell分析盒式系统中,以支持这些雄心勃勃的生物学目标,包括1)用于细胞放置的自动化系统,芯片外设备互连以及具有用户友好接口的高吞吐量数据分析; 2)基于新的检测平台,新的染料和纳米线的新光学传感器; 3)新的微型模块,用于单细胞QRT-PCR,LOH的后期PCR,包括单细胞旋齿钉测序,片上单细胞蛋白质组学和使用条形码的纳米胶质的单细胞转录组学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deirdre R. Meldrum其他文献
Deirdre R. Meldrum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deirdre R. Meldrum', 18)}}的其他基金
In Situ Single Cell Laser Lysis and Downstream qRT-PCR Profiling
原位单细胞激光裂解和下游 qRT-PCR 分析
- 批准号:
8551657 - 财政年份:2012
- 资助金额:
$ 349.76万 - 项目类别:
In Situ Single Cell Laser Lysis and Downstream qRT-PCR Profiling
原位单细胞激光裂解和下游 qRT-PCR 分析
- 批准号:
8414019 - 财政年份:2012
- 资助金额:
$ 349.76万 - 项目类别:
Live-cell Microarray for high-throughput observation of metabolic signatures
用于高通量观察代谢特征的活细胞微阵列
- 批准号:
8231620 - 财政年份:2011
- 资助金额:
$ 349.76万 - 项目类别:
Live-cell Microarray for high-throughput observation of metabolic signatures
用于高通量观察代谢特征的活细胞微阵列
- 批准号:
8725259 - 财政年份:2011
- 资助金额:
$ 349.76万 - 项目类别:
Live-cell Microarray for high-throughput observation of metabolic signatures
用于高通量观察代谢特征的活细胞微阵列
- 批准号:
8333992 - 财政年份:2011
- 资助金额:
$ 349.76万 - 项目类别:
Automated Cell Preparation in Tubes for 3D Microscopy
用于 3D 显微镜的管内自动细胞制备
- 批准号:
7472827 - 财政年份:2005
- 资助金额:
$ 349.76万 - 项目类别:
Automated Cell Preparation in Tubes for 3D Microscopy
用于 3D 显微镜的管内自动细胞制备
- 批准号:
6861456 - 财政年份:2005
- 资助金额:
$ 349.76万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 349.76万 - 项目类别:
A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
- 批准号:
10822182 - 财政年份:2023
- 资助金额:
$ 349.76万 - 项目类别:
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 349.76万 - 项目类别: