Image Slicing Spectrometer (ISS) for high resolution sub-cellular microscopy
用于高分辨率亚细胞显微镜的图像切片光谱仪 (ISS)
基本信息
- 批准号:7572583
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAreaAstronomyBiologicalBiological PreservationCellsCollectionColorCustomDataDevelopmentDevicesDiamondElectronicsElementsEvaluationEventExploratory/Developmental GrantFacility Construction Funding CategoryFluo 4FluorescenceFluorescence Resonance Energy TransferFluorescent ProbesFour-dimensionalFutureGoalsImageInvestigationIonsLasersLifeLightLightingMapsMechanicsMethodsMicroscopeMicroscopyNoiseOpticsProcessProteinsRangeResearchResearch PersonnelResearch Project GrantsResolutionScanningScientistSeriesSideSignal TransductionSliceSpeedStandards of Weights and MeasuresStructureSystemTechniquesTechnologyTestingTimeWorkbasecellular imagingcharge coupled device cameraconceptcostdesigndesiredigitalfluorescence imagingfluorophorefollow-upfura redimaging probeimprovedinsightinstrumentinstrumentationlensnovel strategiesparallel computingpreventresearch studysensor
项目摘要
DESCRIPTION (provided by applicant): This proposal is directed toward development of a fluorescent spectral imaging system for simultaneous high resolution sub-cellular microscopy of multiple fluorescence probes in living cells. Recent developments in fluorescent probes, imaging instrumentation and micro- fabrication now permit building for an Image Slicing Spectrometer (ISS) for real time quantitative spectral imaging. We propose to combine our expertise in microscopy, optical design, fabrication, and imaging with newly available large format CCD cameras and fabrication techniques to develop an ISS system. ISS is a widefield method that is capable of acquiring full spectral information simultaneously from every pixel. This approach works by spatially redirecting image zones to obtain space between image lines. Next, by using a diffractive element, ISS obtains wavelength spread on the CCD camera (for more details on the system principle see Sections C and D). In this way, we unambiguously map x,y, ?; data onto the 2-D image sensor. The specific aims of the project are: (1) to construct the ISS with an initial wavelength range of 450 to 700 nm and (2) to test the Image Slicing Spectrometer against currently available spectral imaging systems in several live cell imaging applications. Work on development of imaging spectrometers for cellular imaging has thus far been hampered either by small fields of view, limited temporal-spatial-spectral resolution, requirement of extensive computations, or limited light efficiency. The Image Slicing Spectrometer proposed here is based on a concept borrowed from the astronomy field, and addresses the major difficulties previously connected with construction of a snapshot spectrometer. The Image Slicer transforms a rectangular Field of View (FoV) into a series of mini "slits", and rearranges them to create sufficient area for spectral spread and acquisition in the snapshot mode. No complicated processing is necessary and only simple remapping is sufficient to obtain a complete x,y, ?; data cube. The core of the system will be a custom-made redirecting mirror fabricated with diamond turning technology. The instrument will employ a Hamamatsu CCD camera with 4000 x 2624 pixel elements, Peltier cooling, and low-noise readout (C4742-98-24HR). Using this large format CCD, the final image data cube will be 400 x 260 x 50 (X, Y, ?) with a spectral resolution of 5 nm and ~0.5 < ¿m spatial resolution. Once the system is built and optimized we will quantitatively evaluate the results from the ISS against the Zeiss LSM510 META, and an Optical Insights Spectral DV system. These evaluations will utilize "standard" fluorophore combinations, starting with two-color pairs, but including more challenging combinations such as CFP/GFP/YFP/Fluo-4, and mCherry/SNARF-1/Fura-Red. In summary the ISS has the potential to significantly advance a wide range of applications in area of cellular imaging. To further its impact, we plan to combine the ISS with optical sectioning in the future, using structured illumination, Nipkow disk confocal, and/or spatial deconvolution. Although it is beyond the scope of the present application, a 4-dimensional imaging system (X, Y, ?, ;) would further improve the S/N of the data, as well as speed of 4-D imaging. The project targets the development of a modern spectrometer called Image Slicing Spectrometer enabling high resolution spectral imaging in real time. In consequence researchers will be able to rapidly advance the investigation of live cells with multiple fluorescent contrasts. The instrument's principle allows obtaining spectral information for entire image without scanning and thus improve signal to noise ratio. It also allows also efficient investigation of transient biological events. Technologies applied in the project and their low cost may potentially allow access of larger group of scientists to spectral imaging instrumentation.
描述(由申请人提供):该提案旨在开发一种荧光光谱成像系统,用于活细胞中多个荧光探针的同时高分辨率亚细胞显微镜检查,荧光探针、成像仪器和微制造的最新发展现在允许构建。我们建议将我们在显微镜、光学设计、制造和成像方面的专业知识与新推出的大幅面 CCD 相机和制造技术相结合,以实现实时定量光谱成像的图像切片光谱仪 (ISS)。 ISS 是一种宽场方法,能够同时从每个像素获取完整的光谱信息。该方法通过空间重定向图像区域来获取图像线之间的空间,然后通过使用衍射元件获得波长扩展。在 CCD 相机上(有关系统原理的更多详细信息,请参阅第 C 节和第 D 节)。是:(1) 构建初始波长范围为 450 至 700 nm 的 ISS,以及 (2) 在多种活细胞成像应用中针对当前可用的光谱成像系统测试图像切片光谱仪。迄今为止,成像一直受到视场小、时空光谱分辨率有限、需要大量计算或光效率有限的阻碍。这里提出的图像切片光谱仪是基于借用的概念。图像切片器将矩形视场 (FoV) 转换为一系列迷你“狭缝”,并重新排列它们以创建足够的光谱扩展区域。快照模式下的采集不需要复杂的处理,只需简单的重新映射即可获得完整的x,y,?; 系统的核心将是定制的重定向镜像。该仪器将采用具有 4000 x 2624 像素元素、Peltier 冷却和低噪声读出功能的 Hamamatsu CCD 相机(C4742-98-24HR),使用这种大幅面 CCD,最终的图像数据立方体将为 400 个。 x 260 x 50 (X, Y, ?),光谱分辨率为 5 nm,~0.5 < ¿一旦系统建成并优化,我们将根据 Zeiss LSM510 META 和 Optical Insights Spectral DV 系统定量评估 ISS 的结果,这些评估将利用“标准”荧光团组合,从两种颜色对开始。 ,但包括更具挑战性的组合,例如 CFP/GFP/YFP/Fluo-4 和 mCherry/SNARF-1/Fura-Red 总之,国际空间站具有显着的潜力。为了进一步扩大其影响,我们计划在未来将国际空间站与光学切片相结合,使用结构照明、尼普科圆盘共焦和/或空间反卷积。在本申请的范围内,4维成像系统(X、Y、?、;)将进一步提高数据的信噪比以及4维成像的速度。现代光谱仪称为图像切片光谱仪可实现实时高分辨率光谱成像,因此研究人员将能够利用多种荧光对比快速推进活细胞的研究,无需扫描即可获得整个图像的光谱信息,从而提高信噪比。它还允许对项目中应用的瞬态生物事件进行有效的研究,并且其低成本可能允许更多的科学家使用光谱成像仪器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOMASZ S TKACZYK其他文献
TOMASZ S TKACZYK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOMASZ S TKACZYK', 18)}}的其他基金
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
- 批准号:
10447267 - 财政年份:2022
- 资助金额:
$ 19.75万 - 项目类别:
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
- 批准号:
10613348 - 财政年份:2022
- 资助金额:
$ 19.75万 - 项目类别:
Imaging CAncer Screening Patch (CASP) for early diagnostics of cervical cancers
用于宫颈癌早期诊断的成像癌筛查贴片 (CASP)
- 批准号:
9316232 - 财政年份:2017
- 资助金额:
$ 19.75万 - 项目类别:
Adaptive Miniature Microscopy Platform for High Throughput Biological Imaging
用于高通量生物成像的自适应微型显微镜平台
- 批准号:
8840586 - 财政年份:2014
- 资助金额:
$ 19.75万 - 项目类别:
Adaptive Miniature Microscopy Platform for High Throughput Biological Imaging
用于高通量生物成像的自适应微型显微镜平台
- 批准号:
8638575 - 财政年份:2014
- 资助金额:
$ 19.75万 - 项目类别:
Miniature Foveated Endoscope for Early Cancer Diagnostics
用于早期癌症诊断的微型中央凹内窥镜
- 批准号:
8549922 - 财政年份:2012
- 资助金额:
$ 19.75万 - 项目类别:
Miniature Foveated Endoscope for Early Cancer Diagnostics
用于早期癌症诊断的微型中央凹内窥镜
- 批准号:
8445549 - 财政年份:2012
- 资助金额:
$ 19.75万 - 项目类别:
Image Slicing Spectrometer (ISS) for high resolution sub-cellular microscopy
用于高分辨率亚细胞显微镜的图像切片光谱仪 (ISS)
- 批准号:
7695567 - 财政年份:2008
- 资助金额:
$ 19.75万 - 项目类别:
Integrated Bi-FOV Endoscope for Detection of Precancer
用于检测癌前病变的集成双视场内窥镜
- 批准号:
7661361 - 财政年份:2007
- 资助金额:
$ 19.75万 - 项目类别:
Integrated Bi-FOV Endoscope for Detection of Precancer
用于检测癌前病变的集成双视场内窥镜
- 批准号:
8119400 - 财政年份:2007
- 资助金额:
$ 19.75万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别: