Molecular Analysis of Trypanosome Infection
锥虫感染的分子分析
基本信息
- 批准号:7483708
- 负责人:
- 金额:$ 35.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAmericasAmino AcidsAnimalsAreaBindingBloodCardiacCardiovascular systemCellsChagas DiseaseChimera organismChronicComputational BiologyComputer SimulationDataDeletion MutationDiseaseEventExtracellular DomainExtracellular MatrixFunctional disorderGastrointestinal tract structureGenesGoalsHeart DiseasesHumanIn VitroIndividualInfectionInterruptionInterventionKnock-outKnowledgeLOX geneLamininLectinLigandsLow Density Lipoprotein ReceptorMammalian CellMediatingModelingMolecularMolecular AnalysisMorbidity - disease rateMusMutateOutcomeParasitesPathogenesisPathologyPeptidesPreventiveProcessProtein-Lysine 6-OxidaseProteinsRNA InterferenceRangeRateReceptor CellRegulationReportingResearchResearch PersonnelRoleSignal PathwaySignal TransductionSignal Transduction PathwayStructureStructure-Activity RelationshipSurfaceTestingTherapeutic InterventionTimeTissuesTranscriptional ActivationTransgenic OrganismsTrypanosomaTrypanosoma cruziUp-RegulationWorkbaseheart functionhuman morbidityin vivoinnovationlaminin-1mortalitymouse modelnovelnovel strategiesoxidized low density lipoproteinreceptorreceptor densityresponsetool
项目摘要
DESCRIPTION (provided by applicant): Trypanosoma cruzi is a blood and tissue parasite that affects millions of individuals causing significant human morbidity and mortality. Basic understanding of the role of the critical surface molecules that participate in the first step of T. cruzi infection may provide novel targets for therapy. Our long-range goal is to understand the molecular mechanisms that allow T. cruzi to infect mammalian cells and cause disease, so that specific molecular intervention strategies can be developed against T. cruzi infection. The objective of this application is to identify which host cell receptors mediate T. cruzi binding to mammalian cells, when receptor-mediated signaling pathways contribute to infection. The hypothesis of this application is that T. cruzi gp83, a ligand molecule that the parasite uses to attach to mammalian cells, binds to the lectin-like oxidized low-density lipoprotein receptor (LOX-1) of mammalian host cells to mediate trypanosome attachment, thereby activating signaling events leading to initial infection and pathogenesis. We have formulated this hypothesis based on strong preliminary results, showing that interruption of LOX-1 gene by gene trapping or silencing LOX-1 gene by RNAi inhibits T. cruzi binding to cells and infection, whereas over-expression of LOX-1 in cells causes over-attachment of trypanosomes to cells and increased infection. Supporting also this hypothesis are our findings showing that gp83 specifically binds to LOX-1 and that we have identified critical regions on gp83 and LOX-1 that interact with each other to apparently mediate T. cruzi attachment leading to parasite entry.
We will test our central hypothesis by pursuing the following specific aims: (1) to determine the structural-function relationships of the LOX-1-gp83 interaction; (2) to determine the LOX-1- dependent signaling pathways that mediate trypanosome gp83-dependent infection; and (3) to determine the in vivo role of the LOX-1 gene in the process of T. cruzi infection and pathogenesis using a novel LOX-1 knock out mouse model and a novel transgenic mouse model over-expressing LOX-1. Mutations, deletions and substitutions in critical regions of LOX-1 and gp83 will be performed to identify the motifs in each interacting molecule involved in T. cruzi binding to cells. Computational modeling of the trypanosome gp83 and the interacting peptide loop from the extracellular domain of LOX-1 will be determined. The mechanism underlying the novel gp83-LOX-1 signal transduction pathway leading to regulation of laminin ?-1 expression and infection will be elucidated using LOX-1(-/-) cells and LOX(+/+) cells. We will use our novel mouse models that over-express LOX-1 or that are null for LOX-1 expression to provide definitive in vivo tools to understand the other complementary mechanisms that contribute to trypanosome infection (in the LOX-1 null animals) and the mechanisms by which LOX-1 mediates infection (in the over-expressing animals).
描述(由申请人提供):克氏锥虫是一种血液和组织寄生虫,影响数百万人,导致严重的人类发病率和死亡率。对参与克氏锥虫感染第一步的关键表面分子的作用的基本了解可能为治疗提供新的靶点。我们的长期目标是了解克氏锥虫感染哺乳动物细胞并引起疾病的分子机制,以便针对克氏锥虫感染制定特定的分子干预策略。本申请的目的是确定当受体介导的信号通路导致感染时,哪些宿主细胞受体介导克氏锥虫与哺乳动物细胞的结合。该应用的假设是,T. cruzi gp83(寄生虫用来附着在哺乳动物细胞上的一种配体分子)与哺乳动物宿主细胞的凝集素样氧化低密度脂蛋白受体(LOX-1)结合,以介导锥虫附着,从而激活导致初始感染和发病机制的信号事件。我们基于强有力的初步结果提出了这一假设,表明通过基因捕获或通过 RNAi 沉默 LOX-1 基因来中断 LOX-1 基因会抑制克氏锥虫与细胞的结合和感染,而细胞中 LOX-1 的过度表达导致锥虫过度附着于细胞并增加感染。我们的研究结果也支持这一假设,表明 gp83 与 LOX-1 特异性结合,并且我们已经确定了 gp83 和 LOX-1 上的关键区域,它们相互作用,明显介导克氏锥虫附着,导致寄生虫进入。
我们将通过追求以下具体目标来检验我们的中心假设:(1)确定LOX-1-gp83相互作用的结构-功能关系; (2)确定介导锥虫gp83依赖性感染的LOX-1依赖性信号通路; (3)利用新型LOX-1敲除小鼠模型和新型过表达LOX-1转基因小鼠模型,确定LOX-1基因在克氏锥虫感染和发病过程中的体内作用。将在 LOX-1 和 gp83 的关键区域进行突变、缺失和取代,以鉴定参与克氏锥虫与细胞结合的每个相互作用分子中的基序。将确定锥虫 gp83 和 LOX-1 胞外域相互作用肽环的计算模型。将使用LOX-1(-/-)细胞和LOX(+/+)细胞阐明导致调节层粘连蛋白α-1表达和感染的新型gp83-LOX-1信号转导途径的潜在机制。我们将使用过度表达 LOX-1 或 LOX-1 表达无效的新型小鼠模型来提供明确的体内工具,以了解有助于锥虫感染的其他补充机制(在 LOX-1 无效动物中)和LOX-1 介导感染的机制(在过度表达的动物中)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fernando Villalta其他文献
Fernando Villalta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fernando Villalta', 18)}}的其他基金
Molecular Microbial Pathogenesis Training Program
分子微生物发病机制培训项目
- 批准号:
6658871 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
Molecular Microbial Pathogenesis Training Program
分子微生物发病机制培训项目
- 批准号:
7257870 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
Molecular Microbial Pathogenesis Training Program
分子微生物发病机制培训项目
- 批准号:
6762350 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
Molecular Microbial Pathogenesis Training Program
分子微生物发病机制培训项目
- 批准号:
7083645 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
ShEEP Request for KEYENCE BZ-X800 All-in-One Fluorescence Microscope
SheEEP 请求购买 KEYENCE BZ-X800 一体式荧光显微镜
- 批准号:
10177103 - 财政年份:2020
- 资助金额:
$ 35.93万 - 项目类别:
Cell-cell adhesion in regulation of mammalian palatogenesis
哺乳动物腭发育调节中的细胞间粘附
- 批准号:
9328402 - 财政年份:2017
- 资助金额:
$ 35.93万 - 项目类别:
Novel Therapeutic Target(s) for Pathogenic Rickettsia Species
致病性立克次体的新治疗靶点
- 批准号:
9041781 - 财政年份:2016
- 资助金额:
$ 35.93万 - 项目类别: