Far Infra-Red Emission and Lasing in Doped Semiconductors

掺杂半导体中的远红外发射和激光

基本信息

  • 批准号:
    EP/E061265/1
  • 负责人:
  • 金额:
    $ 66.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The terahertz band is located between the visible/near infrared frequencies and millimetre/microwave frequencies. Its physical properties bear some resemblance to light on one side and heat or microwaves on the other. It can be reflected and focused like light using special mirrors and lenses. It transfers energy/heat to materials in a similar way to microwaves, by causing the whole molecular structure to vibrate when radiation of the correct frequency is absorbed. This particular property makes terahertz radiation an ideal tool to study the properties of new materials because each material has a unique absorption signature. Why is this new and exciting? Until very recently there have been no practical sources of terahertz radiation, or indeed ways to detect it. So, in many ways this is uncharted territory. The situation changed radically with the invention (in the UK) of the first terahertz laser along with the development of a number of new techniques for producing powerful terahertz pulses.Current terahertz sources are broadly divided into two classes: broadband and single frequency. Terahertz radiation generated from photoconductive antennae and from surface fields is generally classed as broadband. The main limitation of this type of generation scheme is the low powers achieved. Lasers make up the second class, that is, single frequency terahertz sources. The III-V terahertz quantum cascade laser was first demonstrated in 2002 and considerable progress has been made since then. While the quantum cascade laser is undoubtedly an elegant device, its main disadvantage is that it requires complicated and time consuming epitaxial growth. The quantum cascade active region typically contains many hundreds of epilayers and growth times of 36 hours are not unusual.No practical materials exist with conventional bandgaps at terahertz frequencies and thus some other approach must be adopted. However, there is another fundamental energy gap in certain semiconductor materials where the energy separation lies in the terahertz frequency range. Doped semiconductors contain a series of quantized states either just below the bottom of the conduction band (donor levels) or just above the top of the valence band (acceptor levels). Under the right optical pumping conditions it has recently been shown that a population inversion can be achieved between states and stimulated emission at terahertz frequencies has been observed.The overall aim of this project is to re-visit the subject of shallow level impurities in the broad spectrum of semiconductor materials now available to us, and in doing so, open up a whole new field of terahertz laser research. Since most current commercial off-the-shelf terahertz lasers are cumbersome gas based systems, an optically pumped impurity doped semiconductor system would have an obvious size and weight advantage. Furthermore, an electrically pumped impurity based laser would have an additional advantage in that a CO2 pump laser would no longer be required. The technology, if successfully exploited, has the potential to result in a whole new breed of cheap reliable off-the-shelf sources of FIR radiation.
太赫兹频段位于可见光/近红外频率和毫米/微波频率之间。它的物理特性一方面类似于光,另一方面类似于热或微波。它可以像光一样使用特殊的镜子和透镜进行反射和聚焦。它以与微波类似的方式将能量/热量传递给材料,当吸收正确频率的辐射时引起整个分子结构振动。这种特殊的特性使太赫兹辐射成为研究新材料特性的理想工具,因为每种材料都具有独特的吸收特征。为什么这是新的和令人兴奋的?直到最近,还没有实用的太赫兹辐射源,也没有检测它的方法。因此,从很多方面来说,这是一个未知的领域。随着第一台太赫兹激光器的发明(在英国)以及许多产生强大太赫兹脉冲的新技术的发展,情况发生了根本性的变化。当前的太赫兹源大致分为两类:宽带和单频。从光电导天线和表面场产生的太赫兹辐射通常被归类为宽带。这种类型的发电方案的主要限制是所实现的低功率。激光器构成第二类,即单频太赫兹源。 III-V太赫兹量子级联激光器于2002年首次展示,此后已经取得了相当大的进展。虽然量子级联激光器无疑是一种优雅的设备,但其主要缺点是需要复杂且耗时的外延生长。量子级联有源区通常包含数百个外延层,36 小时的生长时间并不罕见。在太赫兹频率下不存在具有常规带隙的实用材料,因此必须采用其他方法。然而,某些半导体材料还存在另一个基本能隙,其能量分离位于太赫兹频率范围内。掺杂半导体包含一系列量子态,要么位于导带底部(施主能级),要么位于价带顶部(受主能级)。最近的研究表明,在正确的光泵浦条件下,可以在态之间实现粒子数反转,并观察到太赫兹频率的受激发射。该项目的总体目标是重新审视广泛领域中浅能级杂质的主题。我们现在可以使用半导体材料的光谱,从而开辟了太赫兹激光研究的全新领域。由于当前大多数商用现成太赫兹激光器都是笨重的基于气体的系统,因此光泵浦杂质掺杂半导体系统将具有明显的尺寸和重量优势。此外,基于电泵浦杂质的激光器还有一个额外的优点,即不再需要二氧化碳泵浦激光器。如果成功利用这项技术,就有可能产生一种全新的廉价可靠的现成远红外辐射源。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parameters controlling the photocatalytic performance of ZnO/Hombikat TiO2 composites
控制 ZnO/Hombikat TiO2 复合材料光催化性能的参数
  • DOI:
    10.1016/j.jphotochem.2011.11.001
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamdy M
  • 通讯作者:
    Hamdy M
Inhomogeneous broadening of phosphorus donor lines in the far-infrared spectra of single-crystalline SiGe
  • DOI:
    10.1103/physrevb.82.245206
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Lynch;G. Matmon;S. Pavlov;K. Litvinenko;B. Redlich;A. F. G. Meer;N. Abrosimov;H. Hübers
  • 通讯作者:
    S. Lynch;G. Matmon;S. Pavlov;K. Litvinenko;B. Redlich;A. F. G. Meer;N. Abrosimov;H. Hübers
Silicon with an increased content of monoatomic sulfur centers: Sample fabrication and optical spectroscopy
单原子硫中心含量增加的硅:样品制造和光谱
  • DOI:
    10.1134/s1063782613020048
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Astrov Y
  • 通讯作者:
    Astrov Y
Silicon as a model ion trap: time domain measurements of donor Rydberg states
硅作为模型离子陷阱:供体里德伯态的时域测量
  • DOI:
    10.48550/arxiv.0812.0148
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vinh N
  • 通讯作者:
    Vinh N
Laboratory Scale Water Circuit Including a Photocatalytic Reactor and a Portable In-Stream Sensor To Monitor Pollutant Degradation
实验室规模水回路,包括光催化反应器和便携式流内传感器,用于监测污染物降解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Lynch其他文献

Dynamical Systems With Applications Using Matlab
  • DOI:
    10.1007/978-0-8176-8156-2
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Lynch
  • 通讯作者:
    Stephen Lynch
MATLAB and Python Open Book Assessments: Lessons from Two UK Institutions
MATLAB 和 Python 开卷评估:两家英国机构的经验教训
http://dayta. me−A personal news+ data recommender for your day
http://dayta.me-您当天的个人新闻+数据推荐
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Al;Gianluca Correndo;H. Glaser;Augustinas Grieze;Stephen Lynch;Ian Millard;Emmanuel Munyadzwe;T. Omitola;I. Popov;D. P. Richardson;M. Salvadores;Daniel A. Smith;M. V. Kleek;Yang Yang;M. Schraefel;W. Hall;T. Berners;N. Shadbolt
  • 通讯作者:
    N. Shadbolt
Energy and the University: The Role of Gas Turbines at US Universities and Strategies for Enhancing Energy Literacy
能源与大学:燃气轮机在美国大学的作用以及提高能源素养的策略
Image Processing with Python
  • DOI:
    10.1007/978-3-319-78145-7_18
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Lynch
  • 通讯作者:
    Stephen Lynch

Stephen Lynch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Lynch', 18)}}的其他基金

Hybrid Quantum System of Excitons and Superconductors
激子和超导体的混合量子系统
  • 批准号:
    EP/X03853X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Research Grant
Solid State Superatoms
固态超原子
  • 批准号:
    EP/P011470/1
  • 财政年份:
    2017
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Research Grant
The Physics and Engineering of Oxide Semiconductors for Large-Area CMOS
大面积 CMOS 氧化物半导体的物理与工程
  • 批准号:
    EP/M013006/1
  • 财政年份:
    2015
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Research Grant
Far Infra-Red Emission and Lasing in Doped Semiconductors
掺杂半导体中的远红外发射和激光
  • 批准号:
    EP/E061265/2
  • 财政年份:
    2011
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Fellowship
STTR Phase I: Use of Serious Games to Improve Learning Outcomes in Engineering Programs
STTR 第一阶段:利用严肃游戏提高工程项目的学习成果
  • 批准号:
    1110223
  • 财政年份:
    2011
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Standard Grant

相似国自然基金

连续灾害下关联基础设施系统韧性动态评估与提升策略
  • 批准号:
    72371163
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
流动基础设施作用下劳工移民地方嵌入的过程、机制与效应:粤港澳大湾区案例
  • 批准号:
    42371239
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
公众需求视角下灾后城市基础设施恢复智能决策研究
  • 批准号:
    72301133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大型交通基础设施GNSS多模态监测与诊断关键技术
  • 批准号:
    42374021
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向“双碳”目标的中国典型电厂基础设施气候变化适应技术研究
  • 批准号:
    72303126
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Studying the selectivity control of promoted FTS catalysts using infra-red techniques
利用红外技术研究促进费托合成催化剂的选择性控制
  • 批准号:
    2903314
  • 财政年份:
    2023
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Studentship
Transient 2D IR (infra-red) and EA (electronic absorption) spectrometer system
瞬态 2D IR(红外线)和 EA(电子吸收)光谱仪系统
  • 批准号:
    502466866
  • 财政年份:
    2022
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Major Research Instrumentation
Mechanical basis for central dysautonomias following head injury in mice
小鼠头部损伤后中枢自主神经功能异常的力学基础
  • 批准号:
    452805
  • 财政年份:
    2021
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Operating Grants
Photothermal CO2 conversion over supported metal nanoparticle catalysts under visible and near infra-red irradiation and visualization of the temperature of the reaction field
可见光和近红外辐射下负载型金属纳米颗粒催化剂的光热 CO2 转化以及反应场温度的可视化
  • 批准号:
    21H01975
  • 财政年份:
    2021
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next generation infra-red glucose biosensors
下一代红外葡萄糖生物传感器
  • 批准号:
    2601301
  • 财政年份:
    2021
  • 资助金额:
    $ 66.25万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了