A novel approach to study the cellular response to directional loading in relation to biomedical implants

研究生物医学植入物定向载荷细胞反应的新方法

基本信息

  • 批准号:
    EP/E046088/1
  • 负责人:
  • 金额:
    $ 45.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Many tissues in the human body have a structure with a degree of alignment of the component parts. Tissues are built in this way to allow the body to withstand and exert forces required for posture and movement. A typical example of this is the structure of tendons which attach muscles to bone. Their principle structural components are protein fibres called collagen. These collagen fibres have a hierarchical aligned structure in that the fibres are made up of bundles of collagen fibrils and each collagen fibril is composed of long molecular chains. Thus collagen has a macroscopic and a microscopic aligned structure.When the muscles are stretched during movement the collagen fibres align to the direction of force and withstand the loading allowing the muscle to move the bone. When tissues are damaged a normal repair process occurs in which collagen is laid down by cells to rebuild the structure, however, the degree of alignment of the repaired tissue may not be the same as the original tissue and thus its ability to carry a load will be diminished.A material with an aligned structure is anisotropic. The degree of alignment or anisotropy can be measured using a technique called Reflection Anisotropy Spectroscopy (RAS). RAS is a non-destructive optical technique that measures the degree of anisotropy of a material or the interaction of materials at an interface. A material with a completely random structure will have no RAS spectrum but a spectrum would be produced from a material with a degree of alignment that will provide information on its structure at both the microscopic and macroscopic level. Furthermore as the degree of alignment changes the spectrum will change giving us a sensitive way to evaluate the structure of a material. Key advantages of the RAS technique are that it can analyse opaque materials in many environments including under water and it can also follow changes in the alignment of a structure as it is happening.In this study we will use RAS to study the degree of alignment of collagen as a simple molecule attached to an elastic material when it is relaxed and when it is stretched. This will allow us to investigate the microscopic structure of collagen and whether stretching the molecule increases its anisotropy. We will also use RAS to analyse collagen that has been produced by cells, similar to a tissue repair process, when it is relaxed and when it is stretched. In this part we will study the stretching of the collagen itself but also examine if stretching the cells stimulates them to produce more or less aligned collagen. The importance of this is that if stretching the cells stimulates collagen that is aligned more effectively then this can be used to change the normal tissue repair process following injury. Finally we will use RAS to study collagen in natural tendon, collected from an abattoir, when it is relaxed and when it is stretched and compare these spectra with those described above.This will be the first time RAS has been used to study biological tissue in this way. By combining the expertise of physicists and biomaterials scientists we plan to develop this highly specialised technique to provide a new tool for the evaluation of tissues and their repair processes that could help in the design of medical devices to improve tissue healing and repair.
人体中的许多组织具有一定程度的组成部分的结构。以这种方式建造施肥,以使身体能够承受姿势和运动所需的力。一个典型的例子是将肌肉固定在骨头上的肌腱的结构。它们的原理结构成分是称为胶原蛋白的蛋白质纤维。这些胶原纤维具有分层对齐结构,因为纤维由胶原纤维束组成,每个胶原蛋白原纤维由长分子链组成。因此,胶原蛋白具有宏观和微观对齐的结构。在运动过程中伸展肌肉时,胶原蛋白纤维与力方向对齐并承受载荷,从而使肌肉移动骨骼。当组织受损时,会发生正常的修复过程,其中细胞将胶原蛋白铺设以重建结构,但是,修复的组织的比对程度可能与原始组织不相同,因此其承载载荷的能力将会减少。具有对齐结构的材料是各向异性的。可以使用称为反射各向异性光谱(RAS)的技术来测量比对度或各向异性的程度。 RAS是一种无损的光学技术,可测量材料的各向异性程度或界面处的材料相互作用。具有完全随机结构的材料将没有RAS光谱,但是将从具有一定程度对齐的材料中产生一个频谱,该材料将在显微镜和宏观水平上提供有关其结构的信息。此外,随着对齐程度的变化程度,频谱将变化,从而使我们有一种敏感的方法来评估材料的结构。 RAS技术的关键优势在于,它可以在包括水下在内的许多环境中分析不透明的材料,并且还可以遵循结构发生的变化。在这项研究中,我们将使用RAS来研究胶原蛋白作为一种简单的分子在放松和拉伸时附着在弹性材料上。这将使我们能够研究胶原蛋白的显微镜结构以及拉伸分子是否增加了其各向异性。我们还将使用RAS分析由细胞产生的胶原蛋白,类似于组织修复过程,当它放松和拉伸时。在这一部分中,我们将研究胶原蛋白本身的拉伸,但还检查伸展细胞是否会刺激它们或多或少地对齐胶原蛋白。这一点的重要性是,如果拉伸细胞刺激更有效排列的胶原蛋白,则可以用来改变损伤后正常组织修复过程。最后,我们将使用RAS研究自然肌腱的胶原蛋白,从屠宰场收集,当它放松并拉伸时,并将这些光谱与上述频谱进行比较。这是RAS首次使用RAS在研究中研究RAS中的生物组织这边走。通过结合物理学家和生物材料科学家的专业知识,我们计划开发这种高度专业化的技术,为评估组织及其修复过程提供新工具,以帮助设计医疗设备以改善组织愈合和修复。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Changes in the electronic structure of silicone rubber surfaces induced by oxygen plasma treatment
  • DOI:
    10.1002/sia.2646
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Haines, S. R.;Beamson, G.;Weightman, P.
  • 通讯作者:
    Weightman, P.
Reflection anisotropy spectra of polydimethylsiloxane under a range of mechanically applied stress
一定范围机械应力下聚二甲基硅氧烷的反射各向异性光谱
  • DOI:
    10.1088/0022-3727/43/24/245301
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farrell T
  • 通讯作者:
    Farrell T
Polystyrene Surface Modification for Localized Cell Culture Using a Capillary Dielectric Barrier Discharge Atmospheric- P ressure Microplasma Jet
使用毛细管介质阻挡放电常压微等离子体喷射进行局部细胞培养的聚苯乙烯表面改性
  • DOI:
    10.1002/ppap.201300052
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Doherty K
  • 通讯作者:
    Doherty K
Fundamental differences in model cell-surface polysaccharides revealed by complementary optical and spectroscopic techniques
  • DOI:
    10.1039/c2sm25239b
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Holder, Gareth M.;Bowfield, Andrew;Weightman, Peter
  • 通讯作者:
    Weightman, Peter
Angle resolved XPS characterization of cationic polyacrylamides
  • DOI:
    10.1002/sia.3025
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    J. Zekonyte;Rachel Williams;G. Beamson;P. Weightman
  • 通讯作者:
    J. Zekonyte;Rachel Williams;G. Beamson;P. Weightman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Weightman其他文献

Reflectance anisotropy spectra of the diamond (100)-(2x1) surface: evidence of strongly bound surface state excitons.
金刚石 (100)-(2x1) 表面的反射各向异性光谱:强束缚表面态激子的证据。
  • DOI:
    10.1103/physrevlett.94.087404
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    M. Palummo;O. Pulci;R. Sole;A. Marini;M. Schwitters;S. Haines;K. Williams;David Martin;Peter Weightman;James E. Butler
  • 通讯作者:
    James E. Butler

Peter Weightman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Weightman', 18)}}的其他基金

Development of an ultra sensitive circular dichroism (CD) instrument.
开发超灵敏圆二色性(CD)仪器。
  • 批准号:
    BB/R013225/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45.89万
  • 项目类别:
    Research Grant
FLUENCE: Felix Light for the UK: Exploiting Novel Characteristics and Expertise.
FLUENCE:英国的 Felix Light:利用新颖的特征和专业知识。
  • 批准号:
    EP/R007926/1
  • 财政年份:
    2017
  • 资助金额:
    $ 45.89万
  • 项目类别:
    Research Grant
Towards disease diagnosis through spectrochemical imaging of tissue architecture.
通过组织结构的光谱化学成像进行疾病诊断。
  • 批准号:
    EP/K023349/1
  • 财政年份:
    2013
  • 资助金额:
    $ 45.89万
  • 项目类别:
    Research Grant
Experimental studies of the mechanism of biological organisation.
生物组织机制的实验研究。
  • 批准号:
    EP/H02235X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 45.89万
  • 项目类别:
    Research Grant
Reflection anisotropy spectroscopy as a new tool for linking macromolecular conformation to biological function: applications in biological redox chem
反射各向异性光谱作为连接大分子构象与生物功能的新工具:在生物氧化还原化学中的应用
  • 批准号:
    BB/F004400/1
  • 财政年份:
    2008
  • 资助金额:
    $ 45.89万
  • 项目类别:
    Research Grant

相似国自然基金

利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
开放环境下终身强化学习方法研究及应用
  • 批准号:
    62376122
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高维复杂失效域下飞行器结构可靠性分析的双层自适应学习方法研究
  • 批准号:
    52305150
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高光谱图像可信深度学习分类方法研究
  • 批准号:
    62371169
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督迁移学习的图像篡改取证方法研究
  • 批准号:
    62302117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
  • 批准号:
    10679898
  • 财政年份:
    2024
  • 资助金额:
    $ 45.89万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 45.89万
  • 项目类别:
Refining oxytocin therapy for pain: context is key
完善催产素治疗疼痛的方法:背景是关键
  • 批准号:
    10595113
  • 财政年份:
    2023
  • 资助金额:
    $ 45.89万
  • 项目类别:
Orthogonal CRISPR GEMMs
正交 CRISPR GEMM
  • 批准号:
    10639698
  • 财政年份:
    2023
  • 资助金额:
    $ 45.89万
  • 项目类别:
Investigating the coordinated endothelial-epithelial interactions in adult hair cycle of mouse skin
研究小鼠皮肤成年毛发周期中协调的内皮-上皮相互作用
  • 批准号:
    10674132
  • 财政年份:
    2023
  • 资助金额:
    $ 45.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了