The Nerve Terminal as the Site of Action for Type-2 Alkenes

神经末梢作为 2 型烯烃的作用位点

基本信息

项目摘要

DESCRIPTION (provided by applicant): Abstract Exposure of humans and laboratory animals to acrylamide (ACR) produces cumulative neurotoxicity characterized by gait abnormalities, muscle weakness and a central-peripheral neuropathy. ACR is an 1,2-unsaturated carbonyl derivative and is classified as a type-2 alkene. This is a large class of electrophilic chemicals that have broad industrial, agricultural and pharmaceutical uses. These chemicals are also well-recognized dietary contaminants and environmental pollutants. Data collected during yrs. 17-20 have provided evidence that ACR impairs nerve terminal function by forming irreversible covalent adducts with nucleophilic sulfhydryl groups on functionally important proteins. Proteomic analyses indicate that the protein targets of ACR and the type-2 alkenes are also acceptors for nitric oxide (NO) signaling. NO is a biological electrophile and has been classically thought to influence cell processes through guanylyl cyclase activation. However, NO can also modulate cell physiology by forming reversible adducts with cysteine thiolates in protein catalytic triads. At the nerve terminal, NO signaling is critically involved in neurotransmission through modulation of the synaptic vesicle cycle and other presynaptic processes. Thus, NO and ACR interact at common cysteine sulfhydryl sites and, therefore, we hypothesize that irreversible adduction of these receptors by ACR blocks reversible NO binding. The disruption of NO signaling and ensuing loss of neuromodulatory control produces presynaptic toxicity. Therefore, Specific Aim #1 research will define the interactions of ACR with the S-nitrosylated (SNO) proteome of CNS nerve terminals. SNOSID (S-nitrosylated site identification) proteomic analysis will be used to demonstrate ACR adduction of SNO-cysteine sites on nerve terminal proteins. Specific Aim #2 studies will evaluate the specificity of the ACR-NO interaction by considering alternative mechanisms of action; i.e., we will determine the effects of ACR on soluble quanylyl cyclase and nitric oxide synthase (NOS) activity/gene expression. Because NO modulates physiological processes in most cells, it is unclear why nerve terminal NO signaling might be selectively targeted by ACR. Therefore, Specific Aim #3 studies will consider several anatomical and molecular features that might predispose nerve terminals to electrophilic attack. Identifying the mechanism of ACR neurotoxicity could offer global insight regarding the toxicological processes of other type-2 alkenes. Results of the proposed research could also help us understand the pathogenesis of Alzheimer's disease (AD) and other chronic neurodegenerative conditions that presumably involve cellular oxidative stress and endogenous generation of acrolein and other type-2 alkenes. PUBLIC HEALTH RELEVANCE Human exposure to conjugated type-2 alkenes (e.g., acrylamide, methyl acrylate, methylvinyl ketone) occurs through pervasive environmental sources (e.g., industrial exposure, cigarette smoking, car exhaust, combustion, pharmaceuticals) and can result in significant toxicity in nervous tissue and other organ systems (liver, kidney). There is also evidence that endogenous production of type-2 alkenes (e.g., acrolein, 2-hydryoxy-4-nonenal) is critically involved in mediating nerve cell injury associated with accidental neurotrauma and certain human neurodegenerative conditions such as Alzheimer's disease. Therefore, the proposed studies of type-2 alkene neurotoxicity could lead to a better understanding of brain injuries caused by environmental toxicant exposure or disease processes, which would ultimately help in the development of effective therapeutic approaches.
描述(由申请人提供):摘要人类和实验动物接触丙烯酰胺(ACR)会产生累积性神经毒性,其特征是步态异常、肌肉无力和中枢周围神经病变。 ACR是一种1,2-不饱和羰基衍生物,被归类为2型烯烃。这是一大类亲电化学品,具有广泛的工业、农业和制药用途。这些化学物质也是公认的膳食污染物和环境污染物。多年来收集的数据。 17-20提供的证据表明ACR通过与功能重要的蛋白质上的亲核巯基形成不可逆的共价加合物来损害神经末梢功能。蛋白质组学分析表明,ACR 和 2 型烯烃的蛋白质靶标也是一氧化氮 (NO) 信号传导的受体。 NO 是一种生物亲电子试剂,传统上被认为通过鸟苷酸环化酶激活来影响细胞过程。然而,NO 还可以通过与蛋白质催化三联体中的半胱氨酸硫醇盐形成可逆加合物来调节细胞生理学。在神经末梢,NO 信号传导通过调节突触小泡周期和其他突触前过程至关重要地参与神经传递。因此,NO 和 ACR 在共同的半胱氨酸巯基位点相互作用,因此,我们假设 ACR 对这些受体的不可逆加合会阻断可逆的 NO 结合。 NO 信号传导的破坏和随之而来的神经调节控制的丧失会产生突触前毒性。因此,特定目标#1 研究将定义 ACR 与 CNS 神经末梢 S-亚硝基化 (SNO) 蛋白质组的相互作用。 SNOSID(S-亚硝基化位点识别)蛋白质组学分析将用于证明神经末梢蛋白上 SNO-半胱氨酸位点的 ACR 加合。具体目标#2 研究将通过考虑替代作用机制来评估 ACR-NO 相互作用的特异性;即,我们将确定 ACR 对可溶性季铵基环化酶和一氧化氮合酶 (NOS) 活性/基因表达的影响。由于 NO 调节大多数细胞的生理过程,因此目前尚不清楚为什么神经末梢 NO 信号传导可能被 ACR 选择性地靶向。因此,特定目标#3研究将考虑可能使神经末梢易受亲电攻击的几种解剖学和分子特征。确定 ACR 神经毒性的机制可以为其他 2 型烯烃的毒理学过程提供全面的见解。拟议研究的结果还可以帮助我们了解阿尔茨海默病 (AD) 和其他慢性神经退行性疾病的发病机制,这些疾病可能与细胞氧化应激以及丙烯醛和其他 2 型烯烃的内源生成有关。公共卫生相关性 人类通过普遍的环境来源(例如工业接触、吸烟、汽车尾气、燃烧、药品)接触共轭 2 型烯烃(例如丙烯酰胺、丙烯酸甲酯、甲基乙烯基酮),并可能导致严重毒性。神经组织和其他器官系统(肝、肾)。还有证据表明,2 型烯烃(例如丙烯醛、2-羟基-4-壬烯醛)的内源性生成在介导与意外神经创伤和某些人类神经退行性疾病(如阿尔茨海默病)相关的神经细胞损伤中发挥着重要作用。因此,拟议的 2 型烯烃神经毒性研究可能有助于更好地了解环境毒物暴露或疾病过程引起的脑损伤,这最终将有助于开发有效的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Michael Lopachin其他文献

Richard Michael Lopachin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Michael Lopachin', 18)}}的其他基金

The Nerve Terminal as the Site of Action for Type-2 Alkenes
神经末梢作为 2 型烯烃的作用位点
  • 批准号:
    7848369
  • 财政年份:
    2008
  • 资助金额:
    $ 30.01万
  • 项目类别:
The Nerve Terminal as the Site of Action for Type-2 Alkenes
神经末梢作为 2 型烯烃的作用位点
  • 批准号:
    7674795
  • 财政年份:
    2008
  • 资助金额:
    $ 30.01万
  • 项目类别:
The Nerve Terminal as the Site of Action for Type-2 Alkenes
神经末梢作为 2 型烯烃的作用位点
  • 批准号:
    8077283
  • 财政年份:
    2008
  • 资助金额:
    $ 30.01万
  • 项目类别:
Molecular Mechanisms of Hexacarbon-Induced Axon Atrophy
六碳诱发轴突萎缩的分子机制
  • 批准号:
    7432635
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
MOLECULAR MECHANISMS OF HEXACARBON-INDUCED AXON ATROPHY
六碳诱发轴突萎缩的分子机制
  • 批准号:
    6382194
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
Molecular Mechanisms of Hexacarbon-Induced Axon Atrophy
六碳诱发轴突萎缩的分子机制
  • 批准号:
    7226343
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
MOLECULAR MECHANISMS OF HEXACARBON-INDUCED AXON ATROPHY
六碳诱发轴突萎缩的分子机制
  • 批准号:
    6197400
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
Molecular Mechanisms of Hexacarbon-Induced Axon Atrophy
六碳诱发轴突萎缩的分子机制
  • 批准号:
    7106091
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
MOLECULAR MECHANISMS OF HEXACARBON INDUCED AXON ATROPHY
六碳诱导轴突萎缩的分子机制
  • 批准号:
    2856865
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:
MOLECULAR MECHANISMS OF HEXACARBON-INDUCED AXON ATROPHY
六碳诱发轴突萎缩的分子机制
  • 批准号:
    6524758
  • 财政年份:
    1997
  • 资助金额:
    $ 30.01万
  • 项目类别:

相似国自然基金

基于与氨基酸互作的丙烯醛体内暴露水平升高机制研究
  • 批准号:
    32372242
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
丙烯醛介导的铁死亡生殖损伤及硫化氢的保护作用和机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环磷酰胺通过其代谢物丙烯醛诱导肿瘤患者认知障碍的机制研究
  • 批准号:
    82103024
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
P-B/N/S插层类石墨烯多孔碳的制备及其催化甲基丙烯醛氧化为甲基丙烯酸的研究
  • 批准号:
    22108060
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Au-Ag双金属团簇催化剂的设计合成及其催化甲基丙烯醛/甲醇氧化酯化反应性能研究
  • 批准号:
    22102149
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
  • 批准号:
    10638866
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
Core 3 - Biomarkers and Product Evaluation
核心 3 - 生物标志物和产品评估
  • 批准号:
    10628258
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
In vivo anti cancer natural product synthesis based on reaction with endogenous acrolein
基于与内源性丙烯醛反应的体内抗癌天然产物合成
  • 批准号:
    23KJ0944
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Prodrug Strategy by Diels-Alder Reaction with Cancer-Derived Acrolein
通过与癌症衍生的丙烯醛进行第尔斯-阿尔德反应的前药策略
  • 批准号:
    23K17971
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Receptor-mediated dysfunction of satellite glia and uninjured sensory neurons as a novel link between referred neuropathic pain and bladder disease
卫星胶质细胞和未损伤感觉神经元受体介导的功能障碍是牵涉性神经性疼痛和膀胱疾病之间的新联系
  • 批准号:
    10602919
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了