Studies of Molecular Recognition in Biological Systems
生物系统中分子识别的研究
基本信息
- 批准号:7505364
- 负责人:
- 金额:$ 28.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-20 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptedAffectAffinityBindingBiologicalBiologyCalorimetryCationsChemicalsClassificationComplexComputing MethodologiesCrystallographyDataDiseaseEntropyFree EnergyGenerationsHydrogen BondingHydrophobicityKnowledgeLigand BindingLigandsMethodsModelingModificationMolecular ConformationMuscle RigidityNMR SpectroscopyOrganic ChemistryPhosphotyrosinePliabilityProtein BindingProtein DynamicsProteinsPublic HealthRelative (related person)Signal TransductionSolventsStructureSystemTexasTherapeuticTherapeutic AgentsThermodynamicsTitrationsUniversitiesVariantVertebral columnX-Ray Crystallographybasecomputational chemistrydesignenthalpyinsightinterdisciplinary approachmicrocalorimetrymolecular dynamicsmolecular recognitionnovelprofessorprotein structureresearch studysmall moleculesrc Homology Region 2 Domaintool
项目摘要
DESCRIPTION (provided by applicant): Correlating structural modifications of small molecules with changes in their protein binding affinities is a fundamental problem in chemical biology. The difficulty associated with predicting energetics in protein-ligand interactions is exacerbated by an acute lack of detailed experimental data pertaining to how specific variations in ligand structure affect compensating changes in binding enthalpies and entropies in protein-ligand interactions. Contributing to the complexity of the problem is a paucity of information regarding how variations in ligand structure affect protein dynamics in protein-ligand complexes and whether differential changes in such dynamics have a significant effect upon binding energetics. Toward developing a better understanding of molecular recognition in biological systems, we have adopted a unique, multidisciplinary approach in which synthetic organic chemistry, microcalorimetry, protein crystallography, NMR spectroscopy, and computational chemistry are integrated in systematic studies to investigate explicitly how specific variations in ligand structure affect energetics, structure and dynamics in protein-ligand interactions in a well-defined biological system. Briefly, we will design and synthesize pseudopeptides that are derived from pTyr-Val-Asn and vary in their rigidity and/or preorganization, hydrophobicity, cation-@ stabilizing ability, and hydrogen bond accepting ability. The thermodynamic parameters for binding of these pseudopeptides to the Grb2 SH2 domain will be determined using isothermal titration calorimetry, and free energies of solvent transfer of representative compounds will be determined by solvent partition experiments. The consequences of varying ligand structure upon structure and dynamics of the protein in the complex will be studied by X-ray crystallography and NMR. Molecular dynamics simulations will be conducted using experimental data to refine the models and methods, so we can calculate relative binding energetics and probe changes in protein dynamics that occur upon binding ligands having different structures and affinities. The results will be analyzed, and correlations between specific changes in ligand structure with variations in thermodynamic binding parameters and protein flexibility will be identified so it can be ascertained whether changes in ligand structure can be correlated with changes in binding enthalpies and entropies and whether changes in flexibility of the Grb2 SH2 domain contribute significantly to the energetics of ligand binding. Insights obtained from these studies will be used to design second generation pseudopeptides having higher binding affinities for the Grb2 SH2 domain as these will be useful as tools for signal biology and as potential therapeutic leads. PUBLIC HEALTH RELEVANCE: The highly integrated experiments proposed herein are uniquely designed to determine how specific changes in ligand structure affect enthalpies, entropies and dynamics in protein-ligand complexes. The results of these studies will enhance our knowledge of molecular recognition in biological systems and contribute to developing experimental and computational methods that will facilitate the structure-based design of small molecules having high affinities for protein targets. Such tools are indispensable to medicinal chemists as they optimize ligand binding affinities and transform novel leads into selective and potent therapeutic agents to treat diseases.
描述(由申请人提供):将小分子的结构修饰与其蛋白质结合亲和力的变化相关联是化学生物学中的一个基本问题。由于严重缺乏有关配体结构的特定变化如何影响蛋白质-配体相互作用中结合焓和熵的补偿变化的详细实验数据,加剧了与预测蛋白质-配体相互作用中的能量学相关的困难。导致问题复杂性的原因是缺乏关于配体结构的变化如何影响蛋白质-配体复合物中的蛋白质动力学以及这种动力学的差异变化是否对结合能量有显着影响的信息。为了更好地理解生物系统中的分子识别,我们采用了一种独特的多学科方法,将有机合成化学、微量热法、蛋白质晶体学、核磁共振波谱学和计算化学整合到系统研究中,以明确地研究配体的特定变化是如何发生的。结构影响明确的生物系统中蛋白质-配体相互作用的能量、结构和动力学。简而言之,我们将设计和合成源自 pTyr-Val-Asn 的伪肽,其刚性和/或预组织、疏水性、阳离子稳定能力和氢键接受能力各不相同。这些假肽与 Grb2 SH2 结构域结合的热力学参数将使用等温滴定量热法确定,并且代表性化合物的溶剂转移自由能将通过溶剂分配实验确定。将通过 X 射线晶体学和 NMR 研究不同配体结构对复合物中蛋白质的结构和动力学的影响。将使用实验数据进行分子动力学模拟以完善模型和方法,以便我们可以计算相对结合能量并探测具有不同结构和亲和力的配体结合时发生的蛋白质动力学变化。对结果进行分析,并确定配体结构的特定变化与热力学结合参数和蛋白质柔性变化之间的相关性,从而可以确定配体结构的变化是否与结合熵和熵的变化相关,以及配体结构的变化是否与结合熵和熵的变化相关。 Grb2 SH2 结构域的灵活性对配体结合的能量学有显着贡献。从这些研究中获得的见解将用于设计对 Grb2 SH2 结构域具有更高结合亲和力的第二代伪肽,因为这些将可用作信号生物学工具和潜在的治疗先导化合物。公共卫生相关性:本文提出的高度集成的实验经过独特设计,旨在确定配体结构的特定变化如何影响蛋白质-配体复合物的焓、熵和动力学。这些研究的结果将增强我们对生物系统中分子识别的了解,并有助于开发实验和计算方法,从而促进对蛋白质靶标具有高亲和力的小分子的基于结构的设计。这些工具对于药物化学家来说是必不可少的,因为它们优化了配体结合亲和力并将新的先导化合物转化为选择性和有效的治疗剂来治疗疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN MARTIN其他文献
STEPHEN MARTIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN MARTIN', 18)}}的其他基金
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
- 批准号:
10642506 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Generating Diverse Pilot-Scale Libraries for Screening
生成用于筛选的多样化中试规模文库
- 批准号:
7557524 - 财政年份:2008
- 资助金额:
$ 28.56万 - 项目类别:
Generating Diverse Pilot-Scale Libraries for Screening
生成用于筛选的多样化中试规模文库
- 批准号:
7684194 - 财政年份:2008
- 资助金额:
$ 28.56万 - 项目类别:
Studies of Molecular Recognition in Biological Systems
生物系统中分子识别的研究
- 批准号:
7849714 - 财政年份:2008
- 资助金额:
$ 28.56万 - 项目类别:
Generating Diverse Pilot-Scale Libraries for Screening
生成用于筛选的多样化中试规模文库
- 批准号:
7884269 - 财政年份:2008
- 资助金额:
$ 28.56万 - 项目类别:
Studies of Molecular Recognition in Biological Systems
生物系统中分子识别的研究
- 批准号:
7677441 - 财政年份:2008
- 资助金额:
$ 28.56万 - 项目类别:
MECHANISTIC STUDIES OF PHOSPHOLIPID PHOSPHODIESTERASES
磷脂磷酸二酯酶的机理研究
- 批准号:
2022322 - 财政年份:1991
- 资助金额:
$ 28.56万 - 项目类别:
DESIGN OF CHEMICAL PROBES TO STUDY PHOSPHOLIPASE C
研究磷脂酶 C 的化学探针的设计
- 批准号:
3301616 - 财政年份:1991
- 资助金额:
$ 28.56万 - 项目类别:
MECHANISTIC STUDIES OF PHOSPHOLIPID PHOSPHODIESTERASES
磷脂磷酸二酯酶的机理研究
- 批准号:
2608899 - 财政年份:1991
- 资助金额:
$ 28.56万 - 项目类别:
相似国自然基金
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
泛素连接酶TRIM25通过调控肝脏枯否细胞天然免疫反应影响对乙酰氨基酚诱导急性药物性肝损伤结局的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
KAT2A通过影响宿主DC代谢重编程介导肾移植急性细胞性排斥反应的机制研究
- 批准号:82270795
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:
10738905 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Heterogeneity and cellular hierarchy of lung cDC2
肺 cDC2 的异质性和细胞层次
- 批准号:
10665348 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Patterns and neurocognitive consequences of opioid-alcohol polysubstance use
阿片类酒精多物质使用的模式和神经认知后果
- 批准号:
10659347 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别: