Dynamics and Function of the NF-kB Signalling System

NF-kB 信号系统的动力学和功能

基本信息

  • 批准号:
    BB/F005814/1
  • 负责人:
  • 金额:
    $ 101.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

A major challenge in biology is to understand how cells recognize external signals and give appropriate responses. Now that the sequence of the human genome is complete, it is important to assign functions to each gene and to identify the corresponding proteins that control key cellular functions. White and colleagues pioneered the development of microscopy-based methods for the visualization and timelapse measurement of biological processes in single living cells. We have used natural light-emitting proteins from fireflies, jelly fish and fluorescent corals. Synthesis (expression) of these proteins causes mammalian cells to become luminescent (light emitting in the dark) or fluorescent (change the colour of light). By placing the gene that codes for a luminescent protein next to a promoter that controls a gene of interest, we can use luminescence from living cells as a way of measuring when the gene of interest is normally switched on and off. Fluorescent proteins have also been used to genetically label proteins of interest, so that the movement of the protein can be visualized in a living cell. White and colleagues previously used timelapse fluorescence and luminescence microscopy coupled to computer simulations to investigate cell decision making. We discovered that a set of important signalling proteins, called NF-kappaB, move repeatedly into and out of the nucleus of the cell, suggesting that cells may use proteins as timers to encode complex messages (like Morse Code). This was a surprise since the original NF-kappaB protein, p65, was discovered 20 years ago and was thought to act as a simple switch that moves into the nucleus once to activate genes. Only timelapse measurements in single living cells were able to see this. The NF-kappaB system is widely recognised as crucial to the control of important cellular processes including both cell division and cell death. It is implicated as being involved in a variety of diseases, such as cancer and inflammatory disease. We will now develop a substantial systems biology project to study all of the components of this complex system. While the previous work has provided major insights, we now need a far broader range of integrated experimental tools to study it. Also the use of mathematical models to make computer predictions will be critical to help us to visualize how this system works. We will make accurate measurements of the (much larger) set of proteins that are involved in NF-kappaB signalling and the genes that are controlled by these signals. The (very experienced) project team includes bioinformaticians, cell biologists, computer scientists, mathematicians, molecular biologists, microscopists and protein chemists. The project will be managed in a structured and organized way, so that the mathematical modelling can be used to predict and design the biological experiments. A central team of experimental officers will be responsible for coordinating the experiments, data and model storage and communication of information between team members. We will study the numbers of molecules of each of the NF-kappaB proteins in the cell, their stability, chemical states and interactions with each other and with other proteins. We will also study in detail which genes that they bind to and control. We will also aim to understand how single protein molecules acting at single genes can act to control decisions of cell life and death. This multidisciplinary approach is essential in order to understand this complex system. A further aim of the project is to provide training for post-docs and students. In this respect, we will benefit from sponsorship of training courses and symposia by the instrumentation companies Carl Zeiss, Hamamatsu Photonics, Coherent and Nano Imaging Devices. The project will also benefit from ongoing collaborations with Genetix and AstraZeneca
生物学的一个主要挑战是了解细胞如何识别外部信号并给出适当的反应。既然人类基因组序列已经完成,重要的是为每个基因分配功能并识别控制关键细胞功能的相应蛋白质。 White 和同事率先开发了基于显微镜的方法,用于单个活细胞中生物过程的可视化和延时测量。我们使用了来自萤火虫、水母和荧光珊瑚的天然发光蛋白。这些蛋白质的合成(表达)导致哺乳动物细胞发光(在黑暗中发光)或发出荧光(改变光的颜色)。通过将编码发光蛋白的基因放置在控制感兴趣基因的启动子旁边,我们可以使用活细胞的发光作为测量感兴趣基因何时正常打开和关闭的方法。荧光蛋白也被用来对感兴趣的蛋白质进行基因标记,以便可以在活细胞中观察到蛋白质的运动。怀特和同事之前使用延时荧光和发光显微镜与计算机模拟相结合来研究细胞决策。我们发现一组重要的信号蛋白(称为 NF-kappaB)会反复进出细胞核,这表明细胞可能使用蛋白质作为计时器来编码复杂的信息(如摩尔斯电码)。这是一个惊喜,因为最初的 NF-kappaB 蛋白 p65 在 20 年前被发现,被认为是一个简单的开关,一旦进入细胞核即可激活基因。只有对单个活细胞进行延时测量才能看到这一点。 NF-kappaB 系统被广泛认为对于控制重要的细胞过程(包括细胞分裂和细胞死亡)至关重要。它与多种疾病有关,例如癌症和炎症性疾病。我们现在将开发一个实质性的系统生物学项目来研究这个复杂系统的所有组成部分。虽然之前的工作提供了重要的见解,但我们现在需要更广泛的综合实验工具来研究它。此外,使用数学模型进行计算机预测对于帮助我们可视化该系统的工作原理至关重要。我们将对参与 NF-kappaB 信号传导的(更大的)蛋白质组以及受这些信号控制的基因进行精确测量。 (经验丰富的)项目团队包括生物信息学家、细胞生物学家、计算机科学家、数学家、分子生物学家、显微镜学家和蛋白质化学家。该项目将以结构化和有组织的方式进行管理,以便数学模型可以用于预测和设计生物实验。由实验官员组成的中央团队将负责协调实验、数据和模型存储以及团队成员之间的信息通信。我们将研究细胞中每种 NF-kappaB 蛋白的分子数量、它们的稳定性、化学状态以及彼此之间以及与其他蛋白的相互作用。我们还将详细研究它们结合和控制哪些基因。我们还将致力于了解作用于单个基因的单个蛋白质分子如何控制细胞生与死的决定。为了理解这个复杂的系统,这种多学科方法至关重要。该项目的另一个目标是为博士后和学生提供培训。在这方面,我们将受益于仪器公司 Carl Zeiss、Hamamatsu Photonics、Coherent 和 Nano Imaging Devices 对培训课程和研讨会的赞助。该项目还将受益于与 Genetix 和阿斯利康的持续合作

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.
用于耦合哺乳动物时钟和细胞周期的锁相和多个振荡吸引子。
Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data
使用线性噪声近似量化基因转录中的内在和外在噪声:单细胞数据的应用
  • DOI:
    http://dx.10.1214/13-aoas669
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finkenstädt B
  • 通讯作者:
    Finkenstädt B
Using constraints and their value for optimization of large ODE systems.
使用约束及其价值来优化大型 ODE 系统。
Reconstruction of transcriptional dynamics from gene reporter data using differential equations.
使用微分方程从基因报告数据重建转录动力学。
  • DOI:
    http://dx.10.1093/bioinformatics/btn562
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finkenstädt B
  • 通讯作者:
    Finkenstädt B
Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth.
昼夜节律时钟和细胞周期振荡器之间的耦合:对健康细胞和恶性生长的影响。
  • DOI:
    http://dx.10.3389/fneur.2015.00096
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feillet C
  • 通讯作者:
    Feillet C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Rand其他文献

Innexin genes and gap junction proteins in the locust frontal ganglion.
蝗虫额叶神经节中的内联蛋白基因和间隙连接蛋白。
Home monitoring of sleep with a temporary-tattoo EEG, EOG and EMG electrode array: a feasibility study
使用临时纹身脑电图、眼电图和肌电图电极阵列在家监测睡眠:可行性研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    S. Shustak;Lilah Inzelberg;Stanislav Steinberg;David Rand;Moshe David Pur;I. Hillel;Shlomit Katzav;F. Fahoum;M. de Vos;A. Mirelman;Y. Hanein
  • 通讯作者:
    Y. Hanein
Interactions of suboesophageal ganglion and frontal ganglion motor patterns in the locust.
蝗虫食管下神经节和额叶神经节运动模式的相互作用。
  • DOI:
    10.1016/j.jinsphys.2008.03.006
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    David Rand;Ariel Gueijman;Y. Zilberstein;A. Ayali
  • 通讯作者:
    A. Ayali
Wireless electronic-tattoo for long-term high fidelity facial muscle recordings
无线电子纹身用于长期高保真面部肌肉记录
Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance
用于神经元-电极界面的碳纳米管具有改进的机械性能
  • DOI:
    10.1007/978-1-4899-8038-0_1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    David Rand;Y. Hanein
  • 通讯作者:
    Y. Hanein

David Rand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Rand', 18)}}的其他基金

Using catastrophes, dynamics & data analysis to uncover how differentiating cells make decisions
利用灾难、动态
  • 批准号:
    EP/T031573/1
  • 财政年份:
    2021
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    2053626
  • 财政年份:
    2020
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    1939934
  • 财政年份:
    2019
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Continuing Grant
Mathematical Foundations of Information and Decisions in Dynamic Cell Signalling
动态细胞信号传导中信息和决策的数学基础
  • 批准号:
    EP/P019811/1
  • 财政年份:
    2017
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
Small Grant for Visiting Researcher Professor Marek Kimmel, Rice University
为莱斯大学客座研究员 Marek Kimmel 教授提供小额资助
  • 批准号:
    EP/J006653/1
  • 财政年份:
    2011
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
Small Grant for Visiting Researcher Professor Marek Kimmel, Rice University
为莱斯大学客座研究员 Marek Kimmel 教授提供小额资助
  • 批准号:
    EP/J006653/1
  • 财政年份:
    2011
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
IGERT: Reverse Ecology: Computational Integration of Genomes, Organisms, and Environments
IGERT:逆向生态学:基因组、生物体和环境的计算整合
  • 批准号:
    0966060
  • 财政年份:
    2010
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Continuing Grant
Circadian and cell cycle clock systems in cancer
癌症中的昼夜节律和细胞周期时钟系统
  • 批准号:
    BB/I004521/1
  • 财政年份:
    2010
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
American Genetic Association Symposium: The Genetics and Genomics of Environmental Change
美国遗传协会研讨会:环境变化的遗传学和基因组学
  • 批准号:
    0926150
  • 财政年份:
    2009
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Standard Grant
Regulation of Biological Signalling by Temperature (ROBUST)
通过温度调节生物信号(稳健)
  • 批准号:
    BB/F005261/1
  • 财政年份:
    2008
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant

相似国自然基金

β-羟基丁酸介导NF-kB p65去乙酰化修饰在经腹功能性磁刺激治疗脊髓损伤后神经病理性疼痛中的机制研究
  • 批准号:
    82302862
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞核cGAS调控炎症因子转录的新功能及其机制研究
  • 批准号:
    32300729
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核因子Y基因SiNF-YA1应答光周期调控谷子抽穗时间的分子机制解析及功能标记开发
  • 批准号:
    32301916
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
健腰强脊方调控骨骼肌细胞OPG/RANKL/NF-κB信号通路增强多裂肌功能延缓椎间盘退变的机制研究
  • 批准号:
    82374473
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Tmem30a通过ER Stress/NF-κB信号通路调节肠上皮细胞屏障功能稳态介导炎症性肠病的研究
  • 批准号:
    82300629
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of inflammation in TET2 mediated clonal hematopoiesis in the context of bone marrow niche
骨髓生态位背景下炎症在 TET2 介导的克隆造血中的作用
  • 批准号:
    10802101
  • 财政年份:
    2022
  • 资助金额:
    $ 101.02万
  • 项目类别:
Project 3 - Transcriptional and epigenetic heterogeneity of stem/progenitor cells
项目 3 - 干/祖细胞的转录和表观遗传异质性
  • 批准号:
    10641542
  • 财政年份:
    2017
  • 资助金额:
    $ 101.02万
  • 项目类别:
Function and Regulation of the CSN in the NF-kB Activation Pathway
CSN 在 NF-kB 激活途径中的功能和调节
  • 批准号:
    8303937
  • 财政年份:
    2012
  • 资助金额:
    $ 101.02万
  • 项目类别:
Function and Regulation of the CSN in the NF-kB Activation Pathway
CSN 在 NF-kB 激活途径中的功能和调节
  • 批准号:
    8468669
  • 财政年份:
    2012
  • 资助金额:
    $ 101.02万
  • 项目类别:
Dynamics and function of the NF-kappaB signalling system
NF-kappaB信号系统的动力学和功能
  • 批准号:
    BB/F005938/2
  • 财政年份:
    2010
  • 资助金额:
    $ 101.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了