Thermal Vibrations and Localisation Phenomena for Solids with Singularly Perturbed Boundaries

具有奇异摄动边界的固体的热振动和局域化现象

基本信息

  • 批准号:
    EP/D035082/1
  • 负责人:
  • 金额:
    $ 18.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

We plan to study solutions of problems of thermoelasticity in singularly perturbed domains that include subsets of different limit dimensions (multi-structures). A particular feature of the asymptotic approximations used here is the dependence on fast (scaled) variables and hence the presence of boundary layers in the vicinity of singularly perturbed boundaries (e.g. neighbourhoods of junctions regions between elements of a multi-structure). Model fields of the boundary layer type will be studied numerically, and for a certain class of boundary layer formulations analytical solutions are also feasible (for example, some of our model problems can be reduced to functional equations of the Wiener Hopf type). We also plan to use an asymptotic method involving the analysis of Floquet waves in periodic thermoelastic structures to study the influence of a thermal load on transmission and reflection properties of highly porous slabs.
我们计划研究奇异扰动域中热弹性问题的解决方案,其中包括不同极限维度(多结构)的子集。这里使用的渐近近似的一个特殊特征是依赖于快速(缩放)变量,因此在奇异扰动边界附近存在边界层(例如,多结构元素之间的连接区域的邻域)。我们将对边界层类型的模型场进行数值研究,并且对于某一类边界层公式,解析解也是可行的(例如,我们的一些模型问题可以简化为 Wiener Hopf 类型的函数方程)。我们还计划使用渐近方法来分析周期性热弹性结构中的 Floquet 波,以研究热载荷对高多孔板的透射和反射性能的影响。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Movchan其他文献

Green's tensors and lattice sums for electrostatics and elastodynamics
静电学和弹性动力学的格林张量和晶格和
Design of a chiral elastic structure supporting interfacial waveforms
支持界面波形的手性弹性结构的设计

Alexander Movchan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Movchan', 18)}}的其他基金

Asymptotic and numerical modelling of faults and thermal striping in materials with a micro-structure (linked proposal with I.S. Jones, LJMU)
具有微结构的材料中的故障和热条纹的渐近数值模拟(与 LJMU 的 I.S. Jones 的相关提案)
  • 批准号:
    EP/H018514/1
  • 财政年份:
    2010
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
Flexural Waves in Inhomogeneous Periodic Structures and Localized Vibration Modes
非均匀周期结构中的弯曲波和局部振动模式
  • 批准号:
    EP/E035272/1
  • 财政年份:
    2007
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
Wiener-Hopf type models for cracks in dynamic elastic lattices
动态弹性晶格裂纹的 Wiener-Hopf 型模型
  • 批准号:
    EP/D079489/1
  • 财政年份:
    2006
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant

相似国自然基金

面向多源微振动抑制的智能柔顺多稳态耗能机理与方法研究
  • 批准号:
    52305103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRE可调刚度支承结构的转子振动抑制原理和方法
  • 批准号:
    52375075
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
抽水蓄能电站机组-厂房结构瞬态动力特性与振动控制研究
  • 批准号:
    52379091
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
水轮机裂纹叶片流致振动响应频谱特性研究
  • 批准号:
    52309113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
冻融-振动耦合作用下顺层边坡多尺度多级次裂隙系统演化与致灾机理
  • 批准号:
    42307222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-Accuracy Numerical Simulation of Pathological Vocal Fold Vibrations Considering Individual Differences
考虑个体差异的病理性声带振动的高精度数值模拟
  • 批准号:
    23K17195
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Using Ambient Vibrations to Circulate Liquid Coolant in Electric Vehicles
ERI:利用环境振动在电动汽车中循环液体冷却剂
  • 批准号:
    2301776
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
Optimising the design and efficiency of a piezoelectric transducer, through modelling and testing, for energy harvesting of railway track vibrations
通过建模和测试优化压电传感器的设计和效率,用于铁路轨道振动的能量收集
  • 批准号:
    2881802
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Studentship
Safe Rail Vibrations
安全轨道振动
  • 批准号:
    10062268
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Collaborative R&D
Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations
通过热激发振动的非简谐特性了解基本蛋白质动力学
  • 批准号:
    10566333
  • 财政年份:
    2023
  • 资助金额:
    $ 18.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了