Analytical Tools for Optimizing Neurorehabilitation of Gait

优化步态神经康复的分析工具

基本信息

  • 批准号:
    7161059
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-20 至 2007-03-19
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary/Abstract: In recent years, the field of neurological rehabilitation has been reinvigorated with the finding that the central nervous system retains plasticity even into adulthood. Interventions utilizing massed practice neurorehabilitation provide a setting in which an individual with upper motor neuron lesions performs hundreds of repetitions of a behavior per session using the affected extremity(ies); the goal is to develop skill (motor relearning) in the performance of the behavior. In this context, the ability of the spinal cord to reorganize to produce improvements in function appears to be highly sensitive to the appropriate training environment. For example, patients that received body-weight supported treadmill training, following spinal cord injury and stroke, showed improved EMG activation patterns, more natural walking characteristics, and were able to bear more weight on their legs and had higher returns in functional walking ability when compared to patients who received standard physiotherapy. 1 limitation with these gait training protocols is that a number of key training variables are not well controlled for or understood, yet presumably play an instrumental role in functional recovery. For example, walking speed, level of body-weight support, and leg kinematics have all been shown to be important in eliciting and sustaining locomotor patterns in animals, yet we currently lack quantitative techniques for determining how to customize these parameters for individual patients. 1 possible solution to identifying the set of optimal gait training parameters is by integrating active assistance and quantitative assessment that would allow the systematic exploration of walking across various conditions. Recent modifications to the Lokomat (Hocoma, Switzerland), a fully programmable gait trainer, allow us to develop assessment algorithms that make it possible to study peripheral conditions which directly mediate sensory afferent drive to the spinal cord. The specific goal of this Phase I SBIR project is to develop analytical tools for neurorehabilitation of gait for individuals with spinal cord injury or stroke directed at facilitating experiments for optimizing training conditions that promote the highest returns in motor recovery. Our guiding premise is that quantitative tools for assessing motor function will aid both clinical diagnoses and guidance of rehabilitation strategies to improve motor function. We believe that patients with neurological injuries who are trained at conditions that result in the most appropriate joint moments and muscle activation patterns will achieve higher levels of functional recovery than those trained at conditions chosen using heuristic methods. Project Narrative: Rehabilitation from stroke or spinal cord injury is labor-intensive, relying on therapy and assessments that often require direct contact between physical therapist and patient. Physical therapy techniques encouraging correct movement patterns and discouraging incorrect movement patterns have been shown to promote recovery, however, because reimbursement for physical therapy time for stroke patients has decreased substantially robotic devices may be of substantial value for rehabilitation to free therapists from repetitive tasks such as moving a patients' plegic arm to simulate independent reaching, to provide objective, quantitative assessment of motor performance, and to explore the possibility of delivering regular, meaningful therapy independent of the constant attention of the therapist. The specific goal of this Phase I SBIR project is to develop analytical tools for neurorehabilitation of gait for individuals with spinal cord injury or stroke directed at facilitating experiments for optimizing training conditions that promote the highest returns in motor recovery.
描述(由申请人提供): 项目摘要/摘要:近年来,由于发现中枢神经系统甚至到成年期仍保持可塑性,神经康复领域重新焕发活力。利用集中实践神经康复的干预措施提供了一种环境,在这种环境中,患有上运动神经元损伤的个体在每次训练中使用受影响的肢体进行数百次重复的行为;目标是培养执行行为的技能(运动再学习)。在这种情况下,脊髓重组以改善功能的能力似乎对适当的训练环境高度敏感。例如,在脊髓损伤和中风后接受体重支持的跑步机训练的患者表现出改善的肌电图激活模式、更自然的行走特征,并且能够在腿部承受更多的重量,并且在功能性行走能力方面获得更高的回报与接受标准物理治疗的患者相比。这些步态训练方案的一个局限性是,许多关键训练变量没有得到很好的控制或理解,但可能在功能恢复中发挥着重要作用。例如,步行速度、体重支撑水平和腿部运动学都已被证明对于引发和维持动物的运动模式很重要,但我们目前缺乏定量技术来确定如何为个体患者定制这些参数。确定一组最佳步态训练参数的一种可能的解决方案是整合主动辅助和定量评估,这将允许系统地探索在各种条件下行走。最近对完全可编程步态训练器 Lokomat(瑞士霍科马)的修改使我们能够开发评估算法,使研究直接介导脊髓感觉传入驱动的外围条件成为可能。第一阶段 SBIR 项目的具体目标是开发用于脊髓损伤或中风患者步态神经康复的分析工具,旨在促进优化训练条件的实验,从而促进运动恢复的最高回报。我们的指导前提是,用于评估运动功能的定量工具将有助于临床诊断和指导改善运动功能的康复策略。我们相信,与在使用启发式方法选择的条件下接受训练的患者相比,在导致最合适的关节力矩和肌肉激活模式的条件下接受训练的神经损伤患者将实现更高水平的功能恢复。项目叙述:中风或脊髓损伤的康复是劳动密集型的,依赖于治疗和评估,通常需要物理治疗师和患者之间的直接接触。然而,鼓励正确运动模式和阻止不正确运动模式的物理治疗技术已被证明可以促进康复,因为中风患者的物理治疗时间报销已大幅减少,机器人设备可能对康复具有重大价值,可以使治疗师摆脱重复性任务,例如移动患者的瘫痪手臂来模拟独立伸手,对运动表现进行客观、定量的评估,并探索独立于治疗师持续关注而提供定期、有意义的治疗的可能性。第一阶段 SBIR 项目的具体目标是开发用于脊髓损伤或中风患者步态神经康复的分析工具,旨在促进优化训练条件的实验,从而促进运动恢复的最高回报。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

W. Scott Selbie其他文献

The X-Factor: An evaluation of common methods used to analyse major inter-segment kinematics during the golf swing
X 因素:对用于分析高尔夫挥杆过程中主要节段间运动学的常用方法的评估
  • DOI:
    10.1080/02640414.2013.775474
  • 发表时间:
    2013-06-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Susan J. Brown;W. Scott Selbie;E. Wallace
  • 通讯作者:
    E. Wallace
Co-contraction uses dual control of agonist-antagonist muscles to improve motor performance
共同收缩利用主动肌和拮抗肌的双重控制来提高运动表现
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher M Saliba;M. Rainbow;W. Scott Selbie;Kevin J Deluzio;Stephen H. Scott
  • 通讯作者:
    Stephen H. Scott
Commentary on "Modelling knee flexion effects on joint power absorption and adduction moment".
“模拟膝关节屈曲对关节功率吸收和内收力矩的影响”的评论。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ross H Miller;S. Brandon;W. Scott Selbie;K. Deluzio
  • 通讯作者:
    K. Deluzio
A simulation study of vertical jumping from different starting postures.
不同起始姿势垂直跳跃的模拟研究。
  • DOI:
    10.1016/0021-9290(96)00030-9
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    W. Scott Selbie;Graham E. Caldwell
  • 通讯作者:
    Graham E. Caldwell
Inter-session agreement and reliability of the Global Gait Asymmetry index in healthy adults.
健康成人全球步态不对称指数的会话间一致性和可靠性。
  • DOI:
    10.1016/j.gaitpost.2016.09.014
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    S. Cabral;Rita S Fernandes;W. Scott Selbie;Vera Moniz;António P. Veloso
  • 通讯作者:
    António P. Veloso

W. Scott Selbie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('W. Scott Selbie', 18)}}的其他基金

Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
  • 批准号:
    8592857
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
  • 批准号:
    9036935
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
A Probabilistic Pose Estimation Algorithm for 3D Motion Capture Data
3D 运动捕捉数据的概率姿势估计算法
  • 批准号:
    8200961
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
Induced Acceleration Analysis for Rehabilitation
康复诱导加速分析
  • 批准号:
    6898328
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Induced Acceleration Analysis for Rehabilitation
康复诱导加速分析
  • 批准号:
    6739272
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Induced Acceleration Analysis for Rehabilitation
康复诱导加速分析
  • 批准号:
    6587042
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Inverse Dynamics Using Instrumented Assistive Technology
使用仪表辅助技术的逆动力学
  • 批准号:
    6550091
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
VIRTUAL MUSCLE: A HIERARCHICAL MATHEMATICAL MUSCLE MODEL
虚拟肌肉:分层数学肌肉模型
  • 批准号:
    6142075
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
  • 批准号:
    6134794
  • 财政年份:
    1999
  • 资助金额:
    $ 10万
  • 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
  • 批准号:
    6388050
  • 财政年份:
    1999
  • 资助金额:
    $ 10万
  • 项目类别:

相似海外基金

Neurofeedback functional MRI
神经反馈功能磁共振成像
  • 批准号:
    6952802
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
Neurofeedback functional MRI
神经反馈功能磁共振成像
  • 批准号:
    7082827
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
An Assistive Device for Balance Disorders
治疗平衡障碍的辅助装置
  • 批准号:
    6833079
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
Neurofeedback functional MRI
神经反馈功能磁共振成像
  • 批准号:
    6869383
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
PRESSURE RELIEF REMINDER AND COMPLIANCE SYSTEM
泄压提醒和合规系统
  • 批准号:
    6283724
  • 财政年份:
    1997
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了