Processing of cell surface lipoproteins in Streptomyces coelicolor. A new paradigm?

天蓝色链霉菌细胞表面脂蛋白的加工。

基本信息

  • 批准号:
    BB/F009429/1
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Bacteria can be divided into two main groups; Gram negative bacteria have two membranes surrounding the cell, the cytoplasmic membrane and the outer membrane. They also have a space between these membranes called the periplasm. Proteins which are exported across the cytoplasmic membrane typically end up in the periplasm. Gram positive bacteria have only a single membrane, surrounded by a thick cell wall. Proteins which are exported across the membrane must be anchored to the outer surface of the membrane, or the cell wall, to avoid being lost entirely from the cell. These cell surface proteins act as a point of contact with the outside world and are involved in a number of essential processes including sensing environmental changes, protein folding, respiration and nutrient scavenging. They also have an important role in surface attachment and are essential for successful host infection in disease-causing bacteria. One of the main ways in which bacteria attach proteins to their membranes is by attaching a lipid molecule to the N-terminal end of the protein. The widely accepted model suggests that these 'lipoproteins' are first targeted to the Sec (secretion) pathway by a signal sequence at the N-terminus of the protein. Sec transports them across the cytoplasmic membrane to the outside of the cell where an enzyme called Lgt attaches the lipid molecule. The signal sequence is then cleaved by an enzyme called Lsp. In Gram positive bacteria the pathway ends here and the proteins are attached to the outer face of the membrane. In Gram negative bacteria these proteins have another lipid molecule attached by an enzyme called Lnt and this allows them to be transported to the outer membrane. Only a small proportion is retained in the inner membrane. In Gram negative bacteria all the enzymes involved in lipoprotein biosynthesis are essential, probably because removing any one of them results in lipoproteins accumulating in, and destabilising, the inner membrane. In Gram positive bacteria they are essential for the virulence of many disease-causing organisms. They therefore represent an excellent target for new antibacterial drugs such as globomycin, a strong inhibitor of Lsp. We have been studying lipoprotein biosynthesis in the Gram positive bacterium Streptomyces coelicolor, and have discovered some surprising differences which could challenge the widely accepted model. Previously it was assumed that all lipoproteins were exported by Sec but this is not the case in S. coelicolor. We have good evidence that some S. coelicolor lipoproteins can be exported by the Tat secretion pathway. While Sec transports linear proteins, Tat is typically used to transport fully folded proteins which are assembled inside the cell. This challenges the current model and it also suggests that the Lgt enzyme can attach lipids to both linear and fully folded proteins. S. coelicolor is unusual in that it contains two Lgt enzymes and it is possible that one acts on Sec-, and the other on Tat-dependent lipoproteins. Finally, and perhaps most puzzlingly of all, S. coelicolor contains two Lnt enzymes. This enzyme performs a step previously thought to be unique to Gram negative bacteria. Since Gram positive bacteria do not have an outer membrane the function of these enzymes in S. coelicolor are unclear. In this study we will investigate the differences in the export and modification of Tat- and Sec-dependent lipoproteins. We will examine the functions of the two Lgt enzymes in these processing pathways. We will also test the activities of the Lnt enzymes to see if they have the same function as Lnt in Gram negative bacteria. We anticipate that the results of this study will lead to a paradigm shift in our understanding of bacterial lipoprotein biosynthesis.
细菌可分为两大类:革兰氏阴性细菌的细胞周围有两层膜,即细胞质膜和外膜。它们的膜之间还有一个称为周质的空间。穿过细胞质膜输出的蛋白质通常最终进入周质。革兰氏阳性细菌只有一层膜,周围有厚厚的细胞壁。跨膜输出的蛋白质必须锚定在膜的外表面或细胞壁上,以避免从细胞中完全丢失。这些细胞表面蛋白充当与外界的接触点,并参与许多重要过程,包括感知环境变化、蛋白质折叠、呼吸和营养物清除。它们在表面附着方面也具有重要作用,并且对于成功感染致病细菌的宿主至关重要。细菌将蛋白质附着在其膜上的主要方式之一是将脂质分子附着在蛋白质的 N 末端。广泛接受的模型表明,这些“脂蛋白”首先通过蛋白质 N 末端的信号序列靶向 Sec(分泌)途径。 Sec 将它们穿过细胞质膜运输到细胞外部,在那里一种名为 Lgt 的酶附着脂质分子。然后信号序列被称为 Lsp 的酶切割。在革兰氏阳性细菌中,该途径在此结束,蛋白质附着在膜的外表面。在革兰氏阴性细菌中,这些蛋白质具有另一种由 Lnt 酶附着的脂质分子,这使得它们能够被转运到外膜。仅一小部分保留在内膜中。在革兰氏阴性细菌中,参与脂蛋白生物合成的所有酶都是必需的,可能是因为去除其中任何一种酶都会导致脂蛋白在内膜中积累并不稳定。在革兰氏阳性细菌中,它们对于许多致病生物体的毒力至关重要。因此,它们代表了新型抗菌药物(如球霉素(Lsp 的强抑制剂))的绝佳靶标。我们一直在研究革兰氏阳性细菌天蓝色链霉菌的脂蛋白生物合成,并发现了一些令人惊讶的差异,这些差异可能会挑战广泛接受的模型。以前假设所有脂蛋白都是由 Sec 输出的,但天蓝色链球菌的情况并非如此。我们有充分的证据表明一些天蓝色链球菌脂蛋白可以通过 Tat 分泌途径输出。 Sec 运输线性蛋白质,而 Tat 通常用于运输在细胞内组装的完全折叠的蛋白质。这挑战了当前的模型,并且还表明 Lgt 酶可以将脂质附着到线性和完全折叠的蛋白质上。天蓝色链球菌的不同寻常之处在于它含有两种 Lgt 酶,其中一种可能作用于 Sec-,另一种则作用于 Tat 依赖性脂蛋白。最后,也许最令人困惑的是,天蓝色链球菌含有两种 Lnt 酶。这种酶执行以前被认为是革兰氏阴性细菌独有的步骤。由于革兰氏阳性菌没有外膜,因此这些酶在天蓝色链球菌中的功能尚不清楚。在这项研究中,我们将研究 Tat 和 Sec 依赖性脂蛋白的输出和修饰的差异。我们将研究两种 Lgt 酶在这些加工途径中的功能。我们还将测试Lnt酶的活性,看看它们是否与革兰氏阴性菌中的Lnt具有相同的功能。我们预计这项研究的结果将导致我们对细菌脂蛋白生物合成的理解发生范式转变。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence.
  • DOI:
    10.1038/srep01109
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Clark, Laura C.;Seipke, Ryan F.;Prieto, Pilar;Willemse, Joost;van Wezel, Gilles P.;Hutchings, Matthew I.;Hoskisson, Paul A.
  • 通讯作者:
    Hoskisson, Paul A.
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene.
  • DOI:
    10.1038/srep29495
  • 发表时间:
    2016-07-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Munnoch JT;Widdick DA;Chandra G;Sutcliffe IC;Palmer T;Hutchings MI
  • 通讯作者:
    Hutchings MI
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster.
  • DOI:
    10.1371/journal.pone.0003623
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tucker NP;Hicks MG;Clarke TA;Crack JC;Chandra G;Le Brun NE;Dixon R;Hutchings MI
  • 通讯作者:
    Hutchings MI
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor , as shown by targeting of the lipoprotein signal peptidase gene
基于粘粒的诱变导致天蓝色链霉菌遗传不稳定,如脂蛋白信号肽酶基因靶向所示。
  • DOI:
    10.1101/049320
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Munnoch J
  • 通讯作者:
    Munnoch J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Hutchings其他文献

A Simple Setup for Transfer Hydrogenations in Flow Chemistry
流动化学中转移氢化的简单设置
  • DOI:
    10.1055/s-0035-1561624
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Matthew Hutchings;T. Wirth
  • 通讯作者:
    T. Wirth
Safe Use of Nitromethane for Aldol Reactions in Flow
硝基甲烷在流动中安全使用羟醛反应
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Matthew Hutchings;T. Wirth
  • 通讯作者:
    T. Wirth

Matthew Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Hutchings', 18)}}的其他基金

Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Post-translation regulation of antibiotic production in Streptomyces: the loaded gun hypothesis.
链霉菌抗生素生产的翻译后调控:装弹枪假说。
  • 批准号:
    BB/W000628/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Streptomyces bacteria: Antibiotic production in the wheat endosphere
链霉菌:小麦内圈的抗生素生产
  • 批准号:
    BB/T015446/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Regulation, biosynthesis and mode of action of formicamycins, promising new antibiotics with a high barrier to resistanc
福米霉素的调控、生物合成和作用方式,有望成为具有高耐药屏障的新型抗生素
  • 批准号:
    BB/S00811X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Regulation, biosynthesis and mode of action of formicamycins, promising new antibiotics with a high barrier to resistanc
福米霉素的调控、生物合成和作用方式,有望成为具有高耐药屏障的新型抗生素
  • 批准号:
    BB/S00811X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Understanding and manipulating a conserved and essential transcription factor to activate antibiotic production in Streptomyces species
了解和操纵保守且必需的转录因子以激活链霉菌物种中的抗生素生产
  • 批准号:
    BB/P005292/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Partner choice: How does a host select and control its microbiome?
合作伙伴选择:宿主如何选择和控制其微生物组?
  • 批准号:
    NE/M015033/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Let the right ones in: Testing microeconomic models of screening in an ant-bacteria microbiome
让合适的人进来:测试抗菌微生物组筛选的微观经济模型
  • 批准号:
    NE/J01074X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Isolation and characterisation of novel antimycotics
新型抗真菌药的分离和表征
  • 批准号:
    G0801721/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant

相似国自然基金

弓形虫感染对蜕膜NK细胞表面Lag-3的影响及进而导致其母胎耐受功能紊乱的分子机制研究
  • 批准号:
    32302903
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单分子力谱成像及定量细胞表面多糖-凝集素相互作用
  • 批准号:
    22364017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于调控巨噬细胞Integrin β2构象的种植体表面纳米圆凸阵列构建及其改善糖尿病种植体骨结合的研究
  • 批准号:
    82301122
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于细胞表面化学特征的分子印迹-SERS传感原理及其通用性细胞检测应用
  • 批准号:
    22374162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
炎症激活成纤维细胞表面受体TREM-1进而诱导异常成骨分化及后纵韧带骨化的机制研究
  • 批准号:
    82372452
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Comprehensive characterization of immune signaling networks in single-cells by joint quantification of proteins, protein complexes and mRNA
通过蛋白质、蛋白质复合物和 mRNA 的联合定量来全面表征单细胞中的免疫信号网络
  • 批准号:
    10636695
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Surface exosome integrin profiling to predict organotropic metastasis of breast cancer
表面外泌体整合素分析预测乳腺癌的器官转移
  • 批准号:
    10654221
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Defining the role of mechanoresponsive adipocyte-to-fibroblast transition in wound fibrosis.
定义机械反应性脂肪细胞向成纤维细胞转变在伤口纤维化中的作用。
  • 批准号:
    10654464
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
  • 批准号:
    10735395
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
  • 批准号:
    10724495
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了