In Vivo Screening of Mixture-Based Combinatorial Libraries

基于混合物的组合文库的体内筛选

基本信息

项目摘要

DESCRIPTION (provided by applicant): Our working hypothesis is that the direct in vivo screening and identification of individual compounds from mixture-based combinatorial libraries will yield more "advanced" therapeutic candidates, while decreasing the time and costs inherent in the drug discovery process. Current drug discovery screening strategies virtually always involve target based in vitro biochemical or cell-based assays. These serve as the primary means to identify active compounds that are next assessed for their activity in animals studies. It is at this later stage that the majority of compounds fail due to toxicity, lack of efficacy, and poor bioavailability. In support of our working hypothesis, successful preliminary studies utilizing the murine tail flick pain model have demonstrated that clear differentiation can be achieved between active and inactive mixtures. For example, a mixture of 125,000 tetrapeptides, made up of 50 different amino acids at three positions and with only its N-terminal position individually defined, was found to have antinociceptive activity in the tail flick assay. The activity of this mixture (that contained Dmt-DALDA; known to be active in vivo) had a 5 to 10 time longer duration of action than morphine, while being only 3-5 times less active than morphine on a per mg basis. Additionally, other mixtures chosen that had no activity in the mu, delta or kappa opioid binding assays were found that had clear in vivo tail flick activity. This raises the exciting possibility that novel receptor sites or multiple receptor interactions are responsible for the activities found. The two Aims in this proposal will serve as a general proof of concept for this approach and will lay the foundation for later studies with a range of existing heterocyclic mixture-based libraries. The first Aim will use the tail flick assay to complete an iterative deconvolution process to identify the most active amino acids at the three positions of this active mixture. We believe that this will enable the identification of active individual sequences that have enhanced activity relative to Dmt-DALDA or, as a minimum, will identify Dmt-DALDA (both are acceptable proof of concept end results). The second Aim involves the in vivo screening of the entire 50 mixtures making up this tetrapeptide library of 6,250,000 different sequences (50 x 503). In addition to identifying novel opioid specific agonists, this approach may enable the identification of novel antinociceptive compounds that have activity at "orphan" pain modulating non-opioid receptors. If successful, the direct in vivo testing of mixture-based combinatorial libraries will advance not only pain modulation, but biomedical research and the drug discovery process in general.
描述(由申请人提供):我们的工作假设是,从基于混合物的组合库中直接体内筛选和鉴定单个化合物将产生更“先进”的候选治疗药物,同时减少药物发现过程中固有的时间和成本。当前的药物发现筛选策略实际上总是涉及基于靶标的体外生化或基于细胞的测定。这些是鉴定活性化合物的主要手段,接下来在动物研究中评估其活性。正是在这个后期阶段,大多数化合物因毒性、缺乏功效和生物利用度差而失败。 为了支持我们的工作假设,利用小鼠甩尾疼痛模型的成功初步研究表明,可以在活性和非活性混合物之间实现清晰的区分。例如,125,000 个四肽的混合物由三个位置的 50 个不同氨基酸组成,并且仅单独定义其 N 端位置,在甩尾测定中发现具有抗伤害活性。该混合物(含有 Dmt-DALDA;已知在体内具有活性)的活性比吗啡长 5 至 10 倍,而每毫克的活性仅比吗啡低 3-5 倍。此外,发现在 mu、delta 或 kappa 阿片类药物结合测定中没有活性的其他所选混合物具有明显的体内甩尾活性。这提出了令人兴奋的可能性,即新的受体位点或多种受体相互作用是所发现的活性的原因。 该提案中的两个目标将作为该方法的一般概念证明,并将为后续研究一系列现有的基于杂环混合物的库奠定基础。第一个目标将使用甩尾测定来完成迭代解卷积过程,以识别该活性混合物的三个位置处最活跃的氨基酸。我们相信,这将能够识别相对于 Dmt-DALDA 具有增强活性的活性个体序列,或者至少能够识别 Dmt-DALDA(两者都是可接受的概念验证最终结果)。第二个目标涉及对组成这个包含 6,250,000 个不同序列 (50 x 503) 的四肽文库的全部 50 种混​​合物进行体内筛选。除了鉴定新型阿片类特异性激动剂之外,该方法还可以鉴定具有“孤儿”疼痛调节非阿片受体活性的新型抗伤害化合物。如果成功,基于混合物的组合文库的直接体内测试不仅将推进疼痛调节,而且还将推进生物医学研究和总体药物发现过程。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository.
  • DOI:
    10.1021/ci800426u
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Singh N;Guha R;Giulianotti MA;Pinilla C;Houghten RA;Medina-Franco JL
  • 通讯作者:
    Medina-Franco JL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Allen Houghten其他文献

Richard Allen Houghten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Allen Houghten', 18)}}的其他基金

Novel cyclic lipopeptides for treating gram negative bacterial infections
用于治疗革兰氏阴性细菌感染的新型环状脂肽
  • 批准号:
    8956030
  • 财政年份:
    2015
  • 资助金额:
    $ 26.75万
  • 项目类别:
High throughput in vivo screening: translational generation of novel analgesics
高通量体内筛选:新型镇痛药的转化生成
  • 批准号:
    8473840
  • 财政年份:
    2011
  • 资助金额:
    $ 26.75万
  • 项目类别:
High throughput in vivo screening: translational generation of novel analgesics
高通量体内筛选:新型镇痛药的转化生成
  • 批准号:
    8661147
  • 财政年份:
    2011
  • 资助金额:
    $ 26.75万
  • 项目类别:
High throughput in vivo screening: translational generation of novel analgesics
高通量体内筛选:新型镇痛药的转化生成
  • 批准号:
    8303201
  • 财政年份:
    2011
  • 资助金额:
    $ 26.75万
  • 项目类别:
High throughput in vivo screening: translational generation of novel analgesics
高通量体内筛选:新型镇痛药的转化生成
  • 批准号:
    8087405
  • 财政年份:
    2011
  • 资助金额:
    $ 26.75万
  • 项目类别:
Chemical Libraries and Screening
化学库和筛选
  • 批准号:
    7737130
  • 财政年份:
    2008
  • 资助金额:
    $ 26.75万
  • 项目类别:
In Vivo Screening of Mixture-Based Combinatorial Libraries
基于混合物的组合文库的体内筛选
  • 批准号:
    7258231
  • 财政年份:
    2007
  • 资助金额:
    $ 26.75万
  • 项目类别:
Highly Diverse and Structurally Varied Heterocyclic Libraries for the MLSMR
MLSMR 高度多样化且结构多样的杂环文库
  • 批准号:
    7291301
  • 财政年份:
    2007
  • 资助金额:
    $ 26.75万
  • 项目类别:
Highly Diverse and Structurally Varied Heterocyclic Libraries for the MLSMR
MLSMR 高度多样化且结构多样的杂环文库
  • 批准号:
    7493394
  • 财政年份:
    2007
  • 资助金额:
    $ 26.75万
  • 项目类别:
Highly Diverse and Structurally Varied Heterocyclic Libraries for the MLSMR
MLSMR 高度多样化且结构多样的杂环文库
  • 批准号:
    7683843
  • 财政年份:
    2007
  • 资助金额:
    $ 26.75万
  • 项目类别:

相似国自然基金

母乳低聚糖调控动物双歧杆菌F1-7代谢芳香氨基酸机制的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泌乳反刍动物主要组织器官AA代谢调控途径与机制研究
  • 批准号:
    31772623
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
氨基酸转运体CD98/LAT1维持mTORC1低水平在调控中枢神经系统胶质瘤肿瘤干细胞干性上的意义和机制
  • 批准号:
    81702939
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
溶质载体SLC38A3通过mTOR信号促进非小细胞肺癌的转移
  • 批准号:
    81602509
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
氨基酸代谢在银屑病mTOR-HIF-1α通路调控异常中的机制研究
  • 批准号:
    81673056
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
  • 批准号:
    10578068
  • 财政年份:
    2023
  • 资助金额:
    $ 26.75万
  • 项目类别:
Understanding the origins and mechanisms of aryl hydrocarbon receptor promiscuity
了解芳烃受体混杂的起源和机制
  • 批准号:
    10679532
  • 财政年份:
    2023
  • 资助金额:
    $ 26.75万
  • 项目类别:
Targeting the allosteric sodium site with novel probes for delta opioid receptor
用新型 δ 阿片受体探针靶向变构钠位点
  • 批准号:
    10892532
  • 财政年份:
    2023
  • 资助金额:
    $ 26.75万
  • 项目类别:
Test of catestatin (CST) and its mimetic as a new therapy for type 2 diabetes (T2D)
儿茶素 (CST) 及其模拟物作为 2 型糖尿病 (T2D) 新疗法的测试
  • 批准号:
    10823055
  • 财政年份:
    2023
  • 资助金额:
    $ 26.75万
  • 项目类别:
Rational Design from Cryo-EM Structures of High-Affinity Ryanodine Receptor Ligands Based on Natural Peptides
基于天然肽的高亲和力兰尼定受体配体的冷冻电镜结构的合理设计
  • 批准号:
    10729564
  • 财政年份:
    2023
  • 资助金额:
    $ 26.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了