Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
基本信息
- 批准号:7291560
- 负责人:
- 金额:$ 46.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-29 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsApplied ResearchBiochemicalBioinformaticsBiological MarkersBiomedical ResearchBody FluidsCancer DetectionChargeClinicalCollaborationsComputational algorithmDataData AnalysesDetectionDevelopmentDiagnosisDiagnosticDiagnostic Neoplasm StagingEffectivenessFacility Construction Funding CategoryGoalsHealthHeatingHumanImageryIonsLabelLeast-Squares AnalysisLiquid ChromatographyLocationMalignant NeoplasmsMapsMass Spectrum AnalysisMeasuresMolecularMolecular ProfilingNoiseParentsPatientsPatternPhysicsPositioning AttributeProtein DatabasesProteinsProteomicsRangeResearchResearch PersonnelResolutionSamplingScanningScientistScreening procedureSignal TransductionSiteSoftware EngineeringSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStandards of Weights and MeasuresStatistical sensitivitySurveysSurvival RateTechniquesTechnologyTestingTimeTranslatingUncertaintyValidationVirginiaWorkadductbasecollegecomparativecomputerized data processingcomputerized toolscostimprovedionizationleukemiamedical schoolsoutcome forecastprogramsprotein purificationreconstructionresearch studytime usetooltumor molecular fingerprint
项目摘要
DESCRIPTION (provided by applicant):
The comprehensive and quantitative analysis of clinical proteomic samples is an outstanding challenge in biomedical research. New proteomic technologies for cancer detection are urgently needed and hold great potential for improving human health, as underscored by the improved survival rates of patients diagnosed in he early stages of cancer. To this end, we will develop computational tools aimed at increasing the effectiveness of cancer biomarker discovery from label-free MALDI-TOF (matrix-assisted laser- desorption/ionization time-of-flight) mass spectra for verification and identification. The computational algorithms and tools will result in more than an order of magnitude increase in both sensitivity and selectivity For molecular biomarker screening. Specifically, we propose: (i) to optimize signal processing resulting in at east a 4-fold enhancement of sensitivity (as measured by signal-to-noise), 2-fold gain in selectivity (resolution), and 10-fold increase in mass accuracy (Aim 1); (ii) to automate detection of ionization satellite ons followed by mass recalibration (Aim 2) resulting in tripling selectivity and mass accuracy; (iii) to deconvolve intensity distributions from satellite ions into parent protein peaks (Aim 3) resulting in tripling sensitivity for statistical detection and experimental identification of biomarkers from enhanced molecular maps (Aim 4). The increased efficiency of broad mass range screening will decrease the time and cost of the downstream identification and validation experiments. The successful completion of the studies described in this application will provide a basis for expanding these computational tools to other TOP MS platforms, and advance the endeavor of characterizing molecular basis for cancer toward better prognosis and treatment strategies.
描述(由申请人提供):
临床蛋白质组样本的全面定量分析是生物医学研究中的一个突出挑战。迫切需要用于癌症检测的新蛋白质组学技术,并且在改善人类健康方面具有巨大潜力,早期癌症诊断患者的生存率提高就凸显了这一点。为此,我们将开发计算工具,旨在提高从无标记 MALDI-TOF(基质辅助激光解吸/电离飞行时间)质谱中发现癌症生物标志物的有效性,以进行验证和识别。计算算法和工具将使分子生物标志物筛选的灵敏度和选择性提高一个数量级以上。具体来说,我们建议:(i) 优化信号处理,使灵敏度至少提高 4 倍(通过信噪比测量)、选择性(分辨率)提高 2 倍、灵敏度提高 10 倍。质量准确度(目标 1); (ii) 自动检测电离卫星,然后进行质量重新校准(目标 2),从而使选择性和质量精度提高三倍; (iii) 将卫星离子的强度分布解卷积为母蛋白峰(目标 3),从而使增强分子图谱中生物标志物的统计检测和实验鉴定的灵敏度提高三倍(目标 4)。宽质量范围筛选效率的提高将减少下游鉴定和验证实验的时间和成本。本申请中描述的研究的成功完成将为将这些计算工具扩展到其他 TOP MS 平台提供基础,并推动表征癌症分子基础以实现更好的预后和治疗策略的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dariya I. Malyarenko其他文献
Dariya I. Malyarenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dariya I. Malyarenko', 18)}}的其他基金
Correction of Diffusion Gradient Bias in Quantitative Diffusivity Metrics for MultiPlatform Clinical Oncology Trials
多平台临床肿瘤学试验定量扩散率指标中扩散梯度偏差的校正
- 批准号:
10664979 - 财政年份:2015
- 资助金额:
$ 46.66万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7923478 - 财政年份:2006
- 资助金额:
$ 46.66万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7488479 - 财政年份:2006
- 资助金额:
$ 46.66万 - 项目类别:
Enhancement of MS signal processing toward improved cancer biomarker discovery
增强 MS 信号处理以改善癌症生物标志物的发现
- 批准号:
7224566 - 财政年份:2006
- 资助金额:
$ 46.66万 - 项目类别:
相似国自然基金
大规模多重非型结构复合优化的一阶算法及应用研究
- 批准号:12371303
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
短码通用译码算法GRAND及其应用研究
- 批准号:62371101
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
sc3S+结构型剪接元件预测算法揭示干性剪接因子ELAVL2调控肝母细胞瘤恶性演进的机制及临床应用研究
- 批准号:82302642
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高阶张量保结构秩R逼近优化算法及应用研究
- 批准号:12371315
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
大数据时代面向非线性方程组求解的投影算法及其应用研究
- 批准号:62302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 46.66万 - 项目类别:
NRI: Toward Safe and Reliable Robotic Eye Examinations
NRI:迈向安全可靠的机器人眼科检查
- 批准号:
10671768 - 财政年份:2023
- 资助金额:
$ 46.66万 - 项目类别:
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 46.66万 - 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10673857 - 财政年份:2022
- 资助金额:
$ 46.66万 - 项目类别: