Multi-protein assembly of intracellular ion-sensitive potassium channel complexes
细胞内离子敏感钾通道复合物的多蛋白组装
基本信息
- 批准号:BB/D000939/1
- 负责人:
- 金额:$ 29.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the mammalian organism, electrical signals control important processes such as nerve impulses, muscle contraction, and hormone secretion. The advantage of this method of communication is that the temporal resolution is higher than that of chemical signalling. Changes in transmembrane voltage occur when different ionic species flow from one side of the membrane to the other through specialist integral membrane proteins - ion channels. For example, sodium flux is responsible for the propagated action potential along a nerve axon, and the flow of calcium ions into heart cells will trigger a heartbeat. Potassium (K+) currents are a foot on the break for most cellular electrical events, and when coupled with intrinsic voltage and chemical sensing mechanisms provide negative feedback for many cell types. Thus there is a large biotechnological drive for identifying chemical agents that modulate K+-selective channels. Activators (nicorandil, minoxidil) of one particular class are used clinically to relax vascular smooth muscle and thus lower blood pressure, whilst an inhibitor (gliclazide) is one of the most wide-spread treatments for type-2 diabetes. The ion channels that are the topic of the proposed project are a family of intracellular ion-regulated K+ channels, which are formed by the assembly of four a subunits. The first member of the family (Sloa1) assembles to form a well known and characterized calcium-activated K+ channel with a unique pharmacological profile. Its siblings Sloa2.2, a2.2, and a3 are poorly understood, and over the last six years there have been only as many research publications describing their behaviour. Unlike other multi-gene families of K+ channels the individual members have quite different properties with respect to which intracellular ions modulate their behaviour, the rate of ion flow through the channel pore, the ability to reach the cell membrane following synthesis, and the chemical agents that alter activity. The aim of the project is to demonstrate that even more ion channel diversity can be achieved by the co-assembly of more than one type of Sloa subunit. The properties that each individual subunit can confer to the protein complex with be determined by recording K+ currents from cells that have been engineered to synthesise the proteins from foreign nucleic acids. By using this approach modified ion channel DNA can also be introduced, which will allow us to identify which domains of the proteins are responsible for the different behaviour. Because the molecular structures of the different Sloa subunits are similar, domains can be swapped by transplanting segments of DNA from one gene to the other. Electrophysiological experiments will determine whether the functional properties have also been transferred. A separate family of 4 membrane proteins Slob1-4 are known to co-assemble with channels comprised of 4 Sloa1 subunits, altering the functional and pharmacological properties of the channel to different extents. It is not know if they are able to assemble with and modulate the other Sloa subunits, and this will also be addressed. In summary, the aim is to investigate the range of functional and pharmacological K+ channel properties that can be obtained by different combinations of Sloa and b subunits. This will allow us to make predictions of the membrane currents when it is known which of these 8 genes a particular cell-type expresses. On the other hand, we will be able to predict which molecular subunits are likely to be present by studying the properties of the K+ current from a native mammalian cell. Furthermore, by understanding the pharmacology of heteromeric (mixture of subunits) Slo channels we will be able to define more cell-specific drug targets. This is because the chance of other cell types having the same combination of subunits will be lower than the chance of them having just the one subunit, if a drug targets a homomeric assembly of one subunit alone.
在哺乳动物体内,电信号控制着神经冲动、肌肉收缩和激素分泌等重要过程。这种通信方法的优点是时间分辨率高于化学信号。当不同的离子种类通过专门的整体膜蛋白(离子通道)从膜的一侧流到另一侧时,跨膜电压就会发生变化。例如,钠通量负责沿着神经轴突传播动作电位,钙离子流入心脏细胞将触发心跳。钾 (K+) 电流对于大多数细胞电事件来说都是一个突破点,当与固有电压和化学传感机制结合时,可为许多细胞类型提供负反馈。因此,对于识别调节 K+ 选择性通道的化学试剂存在巨大的生物技术驱动力。一类特定的激活剂(尼可地尔、米诺地尔)在临床上用于放松血管平滑肌,从而降低血压,而抑制剂(格列齐特)是治疗 2 型糖尿病最广泛的治疗方法之一。该项目的主题离子通道是细胞内离子调节的 K+ 通道家族,由四个 a 亚基组装而成。该家族的第一个成员 (Sloa1) 组装形成众所周知的钙激活 K+ 通道,具有独特的药理学特征。人们对它的兄弟姐妹 Sloa2.2、a2.2 和 a3 知之甚少,在过去的六年里,描述它们行为的研究出版物也只有同样多的研究出版物。与 K+ 通道的其他多基因家族不同,各个成员在细胞内离子调节其行为、离子流过通道孔的速率、合成后到达细胞膜的能力以及化学试剂方面具有完全不同的特性改变活动。该项目的目的是证明通过联合组装不止一种类型的 Sloa 亚基可以实现更多的离子通道多样性。每个单独的亚基赋予蛋白质复合物的特性可以通过记录细胞的 K+ 电流来确定,这些细胞已被设计为从外来核酸合成蛋白质。通过使用这种方法,还可以引入修饰的离子通道 DNA,这将使我们能够识别蛋白质的哪些结构域负责不同的行为。由于不同 Sloa 亚基的分子结构相似,因此可以通过将 DNA 片段从一个基因移植到另一个基因来交换结构域。电生理实验将确定功能特性是否也已转移。已知由 4 个膜蛋白 Slob1-4 组成的独立家族与由 4 个 Sloa1 亚基组成的通道共组装,从而不同程度地改变通道的功能和药理学特性。目前尚不清楚它们是否能够与其他 Sloa 亚基组装并调节,这也将得到解决。总之,目的是研究通过 Sloa 和 b 亚基的不同组合可以获得的功能和药理学 K+ 通道特性的范围。当知道特定细胞类型表达这 8 个基因中的哪一个时,这将使我们能够预测膜电流。另一方面,通过研究天然哺乳动物细胞的 K+ 电流的特性,我们将能够预测可能存在哪些分子亚基。此外,通过了解异聚(亚基混合物)Slo 通道的药理学,我们将能够定义更多细胞特异性药物靶点。这是因为,如果一种药物单独靶向一个亚基的同聚组装,那么其他细胞类型具有相同亚基组合的机会将低于它们仅具有一个亚基的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Lippiat其他文献
Jonathan Lippiat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Lippiat', 18)}}的其他基金
Understanding the structural basis of sodium-triggered activation of neuronal potassium channels
了解钠触发神经元钾通道激活的结构基础
- 批准号:
BB/X007251/1 - 财政年份:2023
- 资助金额:
$ 29.68万 - 项目类别:
Research Grant
Development of biological tools for the study and modulation of ion channels.
开发用于研究和调节离子通道的生物工具。
- 批准号:
BB/L018047/1 - 财政年份:2014
- 资助金额:
$ 29.68万 - 项目类别:
Research Grant
相似国自然基金
基于跨组学数据研究质体基因组中非同义突变对蛋白质结构的影响
- 批准号:32300539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于线粒体磷酸化蛋白质组探讨CDK1介导的凡纳滨对虾快速冷耐受表型可塑性调控机制
- 批准号:32302977
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精胺代谢与蛋白质精氨酸甲基转移酶PRMT1在前列腺肿瘤的相互作用与分子机制研究
- 批准号:82304537
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
麦源蛋白质二硫键异构酶增筋分子机制研究
- 批准号:32372372
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大气蛋白质降解过程中甘氨酸单体氮同位素的分馏特征及其应用
- 批准号:42363011
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Discovery and characterization of bacterial cell envelope assembly and remodeling networks that modulate tolerance to antibiotics
调节抗生素耐受性的细菌细胞包膜组装和重塑网络的发现和表征
- 批准号:
10711329 - 财政年份:2023
- 资助金额:
$ 29.68万 - 项目类别:
Synthesis and transport of outer membrane components across the Gram-negative cell envelope
外膜成分的合成和跨革兰氏阴性细胞包膜的运输
- 批准号:
10680968 - 财政年份:2023
- 资助金额:
$ 29.68万 - 项目类别:
Interplay of the HIV-1 Env cytoplasmic tail, Gag-MA, and membrane: resolving molecular detail and blocking assembly
HIV-1 Env 胞质尾部、Gag-MA 和膜的相互作用:解析分子细节并阻断组装
- 批准号:
10772333 - 财政年份:2023
- 资助金额:
$ 29.68万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 29.68万 - 项目类别:
Project 3: Defining and defeating the mechanisms of outer membrane biogenesis in Gram-negative bacteria
项目 3:定义并破解革兰氏阴性菌外膜生物发生机制
- 批准号:
10699956 - 财政年份:2022
- 资助金额:
$ 29.68万 - 项目类别: