Gene-targetted Radiotherapy
基因靶向放射治疗
基本信息
- 批准号:7332075
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is the development of basic science information regarding therapeutic radiopharmaceuticals that are based on targeting the decay of Auger-electron-emitting radionuclides to specific sequences in genetic DNA, using triplex-forming oligonucleotides as delivery vehicles. The principal innovation in our approach is that it is the specific DNA sequence of a gene within the genome of a cell that becomes the target of this "radiotherapy", not the total DNA of that cell. Gene-targetted "radiotherapy" optimally utilizes the sub-nanometer effect range of the radionuclides whuch are Auger-emitters to allow targetting of most of the radiodamage to a selected gene sequence while producing minimal damage to the rest of the genome and to other cell components.
This approach requires a carrier molecule that exhibits enough specificity for a selected DNA sequence to deliver the radionuclide to that specific sequence and not to other sites in the genome. As our initial carrier molecule we selected short synthetic oligonucleotides that are able to form a sequence-specific triple helix with the target DNA sequence, so-called triplex-forming oligonucleotides (TFO). We demonstrated the ability of 125I-TFO-NLS conjugates to produce double strand breaks in a specific site in the human multidrug resistance (mdr1) gene within cells.We are currently working to optimize the TFO delivery into the cell nucleus using a gamma-H2AX foci-formation assay to detect the damage produced. We studied the distribution of DNA strand breaks produced by decay of 125I, and the repair of these breaks by protein extracts from mammalian cells. We found that the repair of the radiodecay-produced breaks was orders of magnitude less effective than that of the breaks produced by restriction enzymes; and it was always associated with deletions at the target site. We completed development and characterization of an in vitro DSB repair assay employing DNA substrates bearing authentic DSB damage. We employed our in vitro DSB repair assay to establish that the structure of the DSB produced by different DNA damaging agents (enzymatic, chemical, low-LET radiation, and 125-I) directly affects the ability of human enzymes to repair breaks. These findings are significant because the biological effects of radiation are thought to be a direct effect of the chemical structure of the DSBs produced by the radiation, in conjunction with the inherent DSB repair capacity of the cells in which the breaks occur. We have begun to map and to define the complete spectrum and distribution of DNA lesions associated with 125-II-TFO-induced DSBs. Initial results indicate 125-I-TFO-induced DSBs are associated with base damage and other types of DNA lesions proximal and distal to the DSB. Using our in vitro DSB repair assay, we have shown such damaged DNA structures to be strong inhibitors of human NHEJ repair. Using DNA microarray metodology, we showed that nuclear DNA-localized decays of 125I produce about ten times fewer differentially expressed genes than whole cell exposures from gamma irradiation at comparable doses. These results suggest that the effects of ionizing radiation on changes in global gene expression depend upon the distribution and rate of energy deposition in the cell. We are completing studies using gene-expression analyses to examine the cellular responses to the DNA damage produced by Auger-decay effects in comparison with the gene expression patterns following external gamma irradiations of cells in culture.
该项目的目的是开发有关治疗性放射性药物的基础科学信息,这些信息是基于将螺旋螺螺式发射放射性核素降低到遗传DNA中特定序列的衰减,使用三核苷酸作为递送车辆。我们方法中的主要创新是,它是细胞基因组中基因的特定DNA序列,它成为了这种“放射疗法”的靶标,而不是该细胞的总DNA。基因靶向的“放射疗法”最佳地利用了放射性核素的亚纳米效应范围WH是螺旋杆发射体,可以允许将大多数放射性聚体靶向所选基因序列,同时对基因组和其他细胞成分产生最小的损害。
这种方法需要一个载体分子,该载体分子表现出足够的特异性,可用于选定的DNA序列,以将放射性核素传递到该特定序列而不是基因组中的其他位点。作为我们的初始载体分子,我们选择了能够用靶DNA序列,所谓的三核苷核苷酸(TFO)形成序列特异性三重螺旋的短合成寡核苷酸(TFO)。我们证明了125i-TFO-NLS结合物在细胞内人类多药电阻(MDR1)基因中的特定部位中产生双链断裂的能力。我们目前正在努力通过使用GAMMA-H2AX焦点型分析方法优化TFO将TFO递送到细胞核中,以检测损伤。我们研究了由125i衰减产生的DNA链断裂的分布,并通过哺乳动物细胞中的蛋白质提取物修复了这些断裂。我们发现,放射性季节产生的断裂的修复是比限制酶产生的断裂的数量级要低的数量级。它始终与目标站点的删除有关。我们完成了使用带有正宗DSB损伤的DNA底物的体外DSB修复测定法的开发和表征。我们采用了体外DSB修复测定法,以确定由不同DNA损伤剂(酶,化学,低质量辐射和125-I)产生的DSB的结构直接影响人类酶修复断裂的能力。这些发现很重要,因为辐射的生物学效应被认为是辐射产生的DSB的化学结构的直接作用,并与发生断裂的细胞的固有DSB修复能力结合使用。我们已经开始绘制并定义与125-II-TFO诱导的DSB相关的DNA病变的完整光谱和分布。最初的结果表明,125-I-I-TFO诱导的DSB与DSB近端和远端的其他类型的DNA病变有关。使用我们的体外DSB修复测定法,我们显示了这种受损的DNA结构是人类NHEJ修复的强抑制剂。使用DNA微阵列衡量学,我们表明125i的核DNA - 定位衰减产生的差异表达基因比以可比剂量的伽马射辐照的全细胞暴露少了十倍。这些结果表明,电离辐射对整体基因表达变化的影响取决于细胞中能量沉积的分布和速率。我们正在使用基因表达分析完成研究,以检查与培养物中细胞外部γ辐射后的基因表达模式相比,螺旋螺旋 - 末期效应产生的DNA损伤的细胞反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Ronald Neumann的其他基金
Responses of human stem cells to ionizing radiation exposures
人类干细胞对电离辐射暴露的反应
- 批准号:89528128952812
- 财政年份:
- 资助金额:----
- 项目类别:
Responses of human stem cells to ionizing radiation exposures
人类干细胞对电离辐射暴露的反应
- 批准号:91540679154067
- 财政年份:
- 资助金额:----
- 项目类别:
相似国自然基金
提高电子排斥积分计算精度的高针对性数值辅助基组生成方法研究
- 批准号:12204332
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
提高电子排斥积分计算精度的高针对性数值辅助基组生成方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于DNA适配体的卵巢癌早期诊断与针对性治疗研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于DNA适配体的卵巢癌早期诊断与针对性治疗研究
- 批准号:62172302
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
面向弱刚性刀具变形的深腔模具自由曲面加工误差针对性预测与主动性补偿
- 批准号:51975333
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Disruption of the Blood-Brain Barrier by MRI-guided Focused Ultrasound for the Enhanced Delivery of Chemotherapeutics and Bevacizumab in the Treatment of Glioblastoma Multiforme
通过 MRI 引导的聚焦超声破坏血脑屏障,增强化疗药物和贝伐单抗的输送,治疗多形性胶质母细胞瘤
- 批准号:331283331283
- 财政年份:2014
- 资助金额:----
- 项目类别:Studentship ProgramsStudentship Programs