Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
基本信息
- 批准号:7318269
- 负责人:
- 金额:$ 26.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsArtsBrainBrain regionBrain scanCharacteristicsClassificationClinicalCocaine DependenceComplexComputer softwareComputersDataDepressed moodDevelopmentDevelopment PlansDocumentationEnsureFunctional Magnetic Resonance ImagingGeneticGoalsHamilton Rating Scale for DepressionIndividualLinkLocalizedLocationLogisticsMajor Depressive DisorderMapsMeasuresMental DepressionMental HealthMental disordersMethodologyMethodsModelingPatientsPatternPerformancePharmacotherapyPhysiciansPositron-Emission TomographyProceduresProcessPsychiatric therapeutic procedurePsychotherapyRangeRateRecording of previous eventsRelative (related person)ResearchResearch PersonnelRestScanningSchizophreniaSelection for TreatmentsShort-Term MemorySpecific qualifier valueStatistical MethodsSymptomsSyndromeTechniquesTechnologyTestingTranslatinganalytical toolbaseexperiencegraphical user interfaceimprovedinstrumentinterestmodel developmentneuroimagingneurophysiologynovelnovel strategiespredictive modelingprogramsrelating to nervous systemresponsesoftware developmentstatisticssuccesstool
项目摘要
DESCRIPTION (provided by applicant): Functional neuroimaging technologies, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), are powerful noninvasive tools for mental health research. Analytic methods for fMR! and PET data are critical both for determining substantive research questions that can be addressed and for ensuring the validity of inferences. This project seeks to develop state-of-the-art statistical methodology for fMRI and PET data that will have important mental health implications for clinical practice and research. The long-term goals are 1) to assist physicians in making treatment decisions for patients with psychiatric disorders, focusing here on schizophrenia and major depression and 2) to establish a modeling framework for characterizing task-related brain activity that accounts for spatial associations arising, for example, from complex neurophysiological links between brain regions. In an effort to make an impact on clinical mental health practices, one aim is to develop a novel approach to predict individual-specific responses to treatment. Specifically, the goal is to predict post- treatment patterns of task-related brain activity for a particular patient based on pre-treatment scans and other patient characteristics and to predict eventual symptom response to treatment. The planned developments entail constructing and validating a Bayesian hierarchical model and an accurate classification algorithm for schizophrenia patients and for never-treated depressed subjects. A second aim is to construct a Bayesian hierarchical model for making inferences regarding task-related changes in brain activity, accounting for functional associations between different spatial locations (voxels). This approach would yield localized estimates, similar to commonly applied methods, but would estimate and adjust for key functional linkages. By building a model based on assumptions that are well-suited to the data, a major advantage of the proposed procedure is the ability to draw localized inferences that borrow strength from related voxels, often yielding more accurate results. A second advantage is that tests about extended anatomical regions can incorporate estimates of between-voxel correlations. Spatial modeling developments from Aim 2 may give rise to extensions to the proposed prediction framework (Aim 1). Successful development of the predictive algorithms would provide results that translate naturally to a clinical setting to help inform physicians' decisions regarding psychiatric treatments. Furthermore, the proposed spatial modeling framework would be a novel contribution to existing analytic methods for functional neuroimaging data. The focus here on fMRI and PET data related to schizophrenia, depression, and cocaine-dependence illustrates the potential applicability and relevance of the proposed methods across a range of mental health disorders.
描述(由申请人提供):功能性神经影像技术,包括功能性磁共振成像(fMRI)和正电子发射断层扫描(PET),是用于心理健康研究的强大非侵入性工具。 fMR 的分析方法! PET 数据对于确定可解决的实质性研究问题以及确保推论的有效性都至关重要。该项目旨在开发最先进的 fMRI 和 PET 数据统计方法,这将对临床实践和研究产生重要的心理健康影响。长期目标是 1) 协助医生为精神疾病患者做出治疗决策,重点关注精神分裂症和重度抑郁症;2) 建立一个建模框架,用于描述与任务相关的大脑活动,并解释所产生的空间关联,例如,大脑区域之间复杂的神经生理学联系。为了对临床心理健康实践产生影响,一个目标是开发一种新方法来预测个体对治疗的特定反应。具体来说,目标是根据治疗前扫描和其他患者特征预测特定患者任务相关大脑活动的治疗后模式,并预测对治疗的最终症状反应。计划的开发需要为精神分裂症患者和从未治疗过的抑郁症受试者构建和验证贝叶斯分层模型和准确的分类算法。第二个目标是构建一个贝叶斯分层模型,用于对大脑活动中与任务相关的变化进行推断,解释不同空间位置(体素)之间的功能关联。这种方法将产生局部估计,类似于常用的方法,但会估计和调整关键的功能联系。通过基于非常适合数据的假设构建模型,所提出的程序的一个主要优点是能够利用相关体素的力量得出局部推论,通常会产生更准确的结果。第二个优点是关于扩展解剖区域的测试可以包含体素之间相关性的估计。目标 2 的空间建模发展可能会扩展所提出的预测框架(目标 1)。预测算法的成功开发将提供自然转化为临床环境的结果,以帮助医生做出有关精神科治疗的决策。此外,所提出的空间建模框架将是对功能神经影像数据现有分析方法的新颖贡献。这里重点关注与精神分裂症、抑郁症和可卡因依赖相关的 fMRI 和 PET 数据,说明了所提出的方法在一系列精神健康障碍中的潜在适用性和相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F. DuBois Bowman其他文献
A joint model for longitudinal data profiles and associated event risks with application to a depression study
纵向数据概况和相关事件风险的联合模型及其应用于抑郁症研究
- DOI:
10.1111/j.1467-9876.2005.00485.x - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman;A. Manatunga - 通讯作者:
A. Manatunga
Predicting Power for Longitudinal Studies with Attrition
纵向磨损研究的预测能力
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman - 通讯作者:
F. DuBois Bowman
F. DuBois Bowman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F. DuBois Bowman', 18)}}的其他基金
Brain and Behavioral Indicators of Risk for Parkinsonism among Adolescents with Early Pesticide Exposure
早期接触农药的青少年帕金森病风险的大脑和行为指标
- 批准号:
10321251 - 财政年份:2019
- 资助金额:
$ 26.03万 - 项目类别:
Multimodal Imaging Biomarkers of Parkinson’s Disease
帕金森病的多模态成像生物标志物
- 批准号:
9552310 - 财政年份:2017
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8722053 - 财政年份:2014
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8889317 - 财政年份:2014
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8473443 - 财政年份:2012
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8554396 - 财政年份:2012
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7862581 - 财政年份:2007
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7648077 - 财政年份:2007
- 资助金额:
$ 26.03万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 26.03万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 26.03万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 26.03万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 26.03万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 26.03万 - 项目类别: