Microtubule Motors Studied on a Molecular Scale
分子尺度上的微管马达研究
基本信息
- 批准号:7258642
- 负责人:
- 金额:$ 50.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdenosine TriphosphateAlzheimer&aposs DiseaseAntineoplastic AgentsArtsBacteriaBehaviorBiochemicalBiochemistryBiological AssayBiologyBiophysicsCell LineCell divisionCharacteristicsCharcot-Marie-Tooth DiseaseClassClinical TrialsCouplingDataDevelopmentDiabetes MellitusDynein ATPaseFacility Construction Funding CategoryFamilyFluorescenceGleanGoalsGrantHandHeadHumanImageIndividualInheritedKinesinKineticsLasersLifeLinkMeasurementMeasuresMetabolicMethodsMicrotubulesMitosisMitoticModelingMolecularMolecular MotorsMonitorMotionMotorMotor Neuron DiseaseMovementMyosin ATPaseNumbersOpticsOrganismPersonal SatisfactionPhasePhysiologyPlayPolycystic Kidney DiseasesPredictive ValuePrimary Ciliary DyskinesiasProcessPropertyProtein FamilyProteinsRecombinantsRelative (related person)ResearchResearch PersonnelResolutionRoleSeriesShapesSiblingsSpasticSpeedSurfaceSystemTechniquesTestingThinkingTimeUrsidae FamilyVesicleWalkingWorkbasecancer therapycell motilitydesigndimerexperiencehuman diseaseimprovedinhibitor/antagonistinsightinstrumentinstrumentationinterestlaser tweezermembermolecular scalenanomechanicalnanomechanicsnanometernew technologynovelnucleotide analogoptical trapsprogramsprotein functionresearch studysingle moleculesmall molecule
项目摘要
DESCRIPTION (provided by applicant): Motor proteins, or mechanoenzymes, convert metabolic energy directly into displacement, powering motion at the subcellular level in most living organisms. The largest class of motor proteins is fueled by adenosine triphosphate (ATP) and includes members of the myosin, dynein, and kinesin "superfamilies" of proteins. Despite more than a century of study and an arsenal of approaches, the mechanisms by which these motor proteins function are not firmly established. The mystery of motility remains one of the outstanding problems in biology, and it bears a direct relationship to understanding the molecular basis of motor-related human disease. Members of the kinesin motor superfamily have been implicated in a long list of important ailments, including diabetes, Alzheimer's disease, hereditary spastic paraplesia, Charcot-Marie-Tooth disease, Kartagener's syndrome, polycystic kidney disease, and motor neuron disease. With the advent of specialized techniques, particularly those in the new field of single molecule biophysics, we are tantalizingly close to achieving an understanding of kinesin motor mechanism. Among all motor proteins, members of the kinesin superfamily offer special advantages for research, because (1) they represent the smallest - and arguably the simplest - motors known; (2) processive (continuous) motion is generated by individual motors, facilitating experimental study; (3) atomic-level structural information is available; (4) functional, recombinant forms of kinesin can be expressed in bacteria or various cell lines; and (5) new technology exists that can supply precisely-controlled loads and measure nanometer-level displacements for individual molecules. My lab has played a major role in the development of much of this new technology, particularly laser-based optical traps ("optical tweezers") and single-molecule fluorescence approaches. Single-molecule methods have already led to breakthroughs in our understanding. The long-term goal of my research is to develop a quantitative understanding of how kinesin proteins work, based on single-molecule physiology combined with biochemical and biostructural information. Specific aims of this grant include detailed measurements of the speeds, forces, displacements, ATP coupling, head-head interactions, and other properties of kinesin motors at the single-molecule level. For this next phase of research, we plan to study not only conventional kinesin (kinesin-1, an intracellular vesicle transporter), but also carry out parallel studies of unconventional members of the kinesin superfamily, such as Eg5 (kinesin-5) and KIF3A/B (kinesin-2), two motors known to play key roles in cell division (mitosis), and which therefore represent targets for novel anti-cancer drugs, several of which are now in clinical trials.
描述(由申请人提供):运动蛋白或机械酶,将代谢能直接转换为位移,在大多数活生物体的亚细胞水平上为运动动力。最大的运动蛋白是由三磷酸腺苷(ATP)推动的,其中包括蛋白质的肌球蛋白,动力蛋白和驱动蛋白“超家族”的成员。尽管有一个多世纪的研究和方法,但这些运动蛋白功能的机制尚未牢固确定。运动的奥秘仍然是生物学中的重大问题之一,并且与理解与运动相关的人类疾病的分子基础有直接关系。运动蛋白运动超家族的成员已与一系列重要的疾病有关,包括糖尿病,阿尔茨海默氏病,遗传性痉挛性副疾病,charcot-marie-tooth病,卡塔格纳氏症综合征,多囊肿性肾脏疾病和运动神经元病。随着专业技术的出现,尤其是单分子生物物理学的新领域的技术,我们非常接近了解驱动蛋白运动机制的理解。在所有运动蛋白中,运动蛋白超家族的成员为研究提供了特殊的优势,因为(1)它们代表了最小的 - 可以说是最简单的 - 汽车; (2)各个电动机产生的过程(连续)运动,促进实验研究; (3)可以提供原子级的结构信息; (4)动力蛋白的功能性重组形式可以在细菌或各种细胞系中表达; (5)存在可以提供精确控制载荷并测量单个分子的纳米级位移的新技术。我的实验室在这项新技术的许多开发中发挥了重要作用,尤其是基于激光的光学陷阱(“光学镊子”)和单分子荧光方法。单分子方法已经导致了我们的理解突破。我的研究的长期目标是基于单分子生理学与生化和生物结构信息相结合,对驱动蛋白的工作方式进行定量了解。该赠款的具体目的包括详细测量速度,力,位移,ATP耦合,头头相互作用以及单分子水平上驱动蛋白电动机的其他特性。 For this next phase of research, we plan to study not only conventional kinesin (kinesin-1, an intracellular vesicle transporter), but also carry out parallel studies of unconventional members of the kinesin superfamily, such as Eg5 (kinesin-5) and KIF3A/B (kinesin-2), two motors known to play key roles in cell division (mitosis), and which therefore represent targets for novel anti-cancer药物,其中一些现在正在临床试验中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M BLOCK其他文献
STEVEN M BLOCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M BLOCK', 18)}}的其他基金
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6830175 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes and Nucleic Acids Studied at the Molecular Level
在分子水平上研究的核酸酶和核酸
- 批准号:
8011300 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes and Nucleic Acids Studied at the Molecular Level
在分子水平上研究的核酸酶和核酸
- 批准号:
7778852 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6685308 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6430543 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes Studied at the Molecular Level
分子水平上的核酸酶研究
- 批准号:
7535248 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding Endoplasmic Reticulum-Mitochondrial Cross-Talk in Corneal Endothelial Cells
了解角膜内皮细胞中的内质网-线粒体交互作用
- 批准号:
10550019 - 财政年份:2020
- 资助金额:
$ 50.77万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 50.77万 - 项目类别: