Microtubule Motors Studied on a Molecular Scale
分子尺度上的微管马达研究
基本信息
- 批准号:7258642
- 负责人:
- 金额:$ 50.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdenosine TriphosphateAlzheimer&aposs DiseaseAntineoplastic AgentsArtsBacteriaBehaviorBiochemicalBiochemistryBiological AssayBiologyBiophysicsCell LineCell divisionCharacteristicsCharcot-Marie-Tooth DiseaseClassClinical TrialsCouplingDataDevelopmentDiabetes MellitusDynein ATPaseFacility Construction Funding CategoryFamilyFluorescenceGleanGoalsGrantHandHeadHumanImageIndividualInheritedKinesinKineticsLasersLifeLinkMeasurementMeasuresMetabolicMethodsMicrotubulesMitosisMitoticModelingMolecularMolecular MotorsMonitorMotionMotorMotor Neuron DiseaseMovementMyosin ATPaseNumbersOpticsOrganismPersonal SatisfactionPhasePhysiologyPlayPolycystic Kidney DiseasesPredictive ValuePrimary Ciliary DyskinesiasProcessPropertyProtein FamilyProteinsRecombinantsRelative (related person)ResearchResearch PersonnelResolutionRoleSeriesShapesSiblingsSpasticSpeedSurfaceSystemTechniquesTestingThinkingTimeUrsidae FamilyVesicleWalkingWorkbasecancer therapycell motilitydesigndimerexperiencehuman diseaseimprovedinhibitor/antagonistinsightinstrumentinstrumentationinterestlaser tweezermembermolecular scalenanomechanicalnanomechanicsnanometernew technologynovelnucleotide analogoptical trapsprogramsprotein functionresearch studysingle moleculesmall molecule
项目摘要
DESCRIPTION (provided by applicant): Motor proteins, or mechanoenzymes, convert metabolic energy directly into displacement, powering motion at the subcellular level in most living organisms. The largest class of motor proteins is fueled by adenosine triphosphate (ATP) and includes members of the myosin, dynein, and kinesin "superfamilies" of proteins. Despite more than a century of study and an arsenal of approaches, the mechanisms by which these motor proteins function are not firmly established. The mystery of motility remains one of the outstanding problems in biology, and it bears a direct relationship to understanding the molecular basis of motor-related human disease. Members of the kinesin motor superfamily have been implicated in a long list of important ailments, including diabetes, Alzheimer's disease, hereditary spastic paraplesia, Charcot-Marie-Tooth disease, Kartagener's syndrome, polycystic kidney disease, and motor neuron disease. With the advent of specialized techniques, particularly those in the new field of single molecule biophysics, we are tantalizingly close to achieving an understanding of kinesin motor mechanism. Among all motor proteins, members of the kinesin superfamily offer special advantages for research, because (1) they represent the smallest - and arguably the simplest - motors known; (2) processive (continuous) motion is generated by individual motors, facilitating experimental study; (3) atomic-level structural information is available; (4) functional, recombinant forms of kinesin can be expressed in bacteria or various cell lines; and (5) new technology exists that can supply precisely-controlled loads and measure nanometer-level displacements for individual molecules. My lab has played a major role in the development of much of this new technology, particularly laser-based optical traps ("optical tweezers") and single-molecule fluorescence approaches. Single-molecule methods have already led to breakthroughs in our understanding. The long-term goal of my research is to develop a quantitative understanding of how kinesin proteins work, based on single-molecule physiology combined with biochemical and biostructural information. Specific aims of this grant include detailed measurements of the speeds, forces, displacements, ATP coupling, head-head interactions, and other properties of kinesin motors at the single-molecule level. For this next phase of research, we plan to study not only conventional kinesin (kinesin-1, an intracellular vesicle transporter), but also carry out parallel studies of unconventional members of the kinesin superfamily, such as Eg5 (kinesin-5) and KIF3A/B (kinesin-2), two motors known to play key roles in cell division (mitosis), and which therefore represent targets for novel anti-cancer drugs, several of which are now in clinical trials.
描述(由申请人提供):运动蛋白或机械酶将代谢能直接转化为位移,为大多数生物体的亚细胞水平的运动提供动力。最大一类运动蛋白由三磷酸腺苷 (ATP) 提供能量,包括肌球蛋白、动力蛋白和驱动蛋白“超家族”蛋白的成员。尽管经过一个多世纪的研究和多种方法,这些运动蛋白发挥作用的机制尚未确定。运动之谜仍然是生物学中的突出问题之一,它与理解与运动相关的人类疾病的分子基础有直接关系。驱动蛋白运动超家族的成员与一系列重要疾病有关,包括糖尿病、阿尔茨海默病、遗传性痉挛性截瘫、腓骨肌萎缩症、卡塔格纳综合征、多囊肾病和运动神经元病。随着专业技术的出现,特别是单分子生物物理学新领域的技术的出现,我们已经非常接近了解驱动蛋白运动机制。在所有运动蛋白中,驱动蛋白超家族的成员为研究提供了特殊的优势,因为(1)它们代表了已知的最小的——也可以说是最简单的——运动; (2) 进行性(连续)运动由各个电机产生,便于实验研究; (3) 可获得原子级结构信息; (4)功能性、重组形式的驱动蛋白可以在细菌或各种细胞系中表达; (5)新技术可以提供精确控制的负载并测量单个分子的纳米级位移。我的实验室在大部分新技术的开发中发挥了重要作用,特别是基于激光的光陷阱(“光镊”)和单分子荧光方法。单分子方法已经使我们的理解取得了突破。我研究的长期目标是基于单分子生理学结合生化和生物结构信息,定量了解驱动蛋白的工作原理。该资助的具体目标包括在单分子水平上详细测量速度、力、位移、ATP 耦合、头-头相互作用以及驱动蛋白马达的其他特性。在下一阶段的研究中,我们计划不仅研究传统的驱动蛋白(kinesin-1,一种细胞内囊泡转运蛋白),而且还对驱动蛋白超家族的非常规成员进行平行研究,例如Eg5(kinesin-5)和KIF3A /B(驱动蛋白-2),已知在细胞分裂(有丝分裂)中发挥关键作用的两种马达,因此代表了新型抗癌药物的靶标,其中一些药物现已上市在临床试验中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M BLOCK其他文献
STEVEN M BLOCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M BLOCK', 18)}}的其他基金
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6830175 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes and Nucleic Acids Studied at the Molecular Level
在分子水平上研究的核酸酶和核酸
- 批准号:
8011300 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6685308 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic acid enzymes studied at the molecular level
在分子水平上研究核酸酶
- 批准号:
6430543 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes and Nucleic Acids Studied at the Molecular Level
在分子水平上研究的核酸酶和核酸
- 批准号:
7778852 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
Nucleic Acid Enzymes Studied at the Molecular Level
分子水平上的核酸酶研究
- 批准号:
7535248 - 财政年份:1997
- 资助金额:
$ 50.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Understanding Endoplasmic Reticulum-Mitochondrial Cross-Talk in Corneal Endothelial Cells
了解角膜内皮细胞中的内质网-线粒体交互作用
- 批准号:
10550019 - 财政年份:2020
- 资助金额:
$ 50.77万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 50.77万 - 项目类别: